基于人工标注与对比生成模型的玉米叶病图文多模态数据集
收稿日期: 2025-04-16
录用日期: 2025-05-20
网络出版日期: 2025-09-28
基金资助
新一代人工智能国家科技重大专项(2021ZD0113705)
Image-Text Multi-Modal Dataset of Corn Leaf Diseases based on Manual Annotation and Contrast Generation Model
Received date: 2025-04-16
Accepted date: 2025-05-20
Online published: 2025-09-28
玉米叶部病害的精准识别是农业智能化管理的重要环节。现有玉米病害数据集存在质量参差不齐、标签类别模糊、多模态数据匮乏等问题,尤其是中文语境下的病害描述数据的稀缺性。本研究整合了自建数据与AI Challenger、Plant Village及OpenDataLab开源的玉米叶部病害高清图像数据,并由人工基于文献、专业书籍及科学数据等先验知识对图像进行诊断性文本描述标注,共构建了中文语境下的1 653组图像-文本对多模态数据集。其中,每张图像对应的文本模态内容涵盖病害类型、病状特征及严重程度等关键信息。在此基础上,探索使用CN-CLIP与GPT2-Chinese大模型组合生成图像描述的补充增强内容,丰富描述文本模态数据的多样性,为图像自动标注提供实践验证。本数据集可为玉米病害智能诊断模型开发、中文图像描述生成及农业多模态知识图谱构建提供高质量数据样本支撑。
数据摘要:
项目 | 描述 |
---|---|
数据库(集)名称 | 基于人工标注与对比生成模型的玉米叶病图文多模态数据集 |
所属学科 | 农业科学,计算机科学 |
研究主题 | 计算机视觉,跨模态检索,图像描述生成 |
数据类型与技术格式 | .jpg |
数据库(集)组成 | 数据集由图像数据和对应的文本描述数据组成,其中:图像数据集包括玉米大斑病、小斑病、褐斑病、弯孢霉叶斑病、普通锈病、南方锈病、灰斑病、圆斑病和矮花叶病等9种典型叶部病害原始图像数据,共1 653幅;文本数据,描述对应图像的作物名称、病害类型、病斑位置、数量、颜色及形状等细粒度病害特征,平均长度约32字符数,共1653条。 |
数据量 | 3.87 GB |
主要数据指标 | 图像与其对应的描述文本 |
数据可用性 | CSTR:17058.11.sciencedb.agriculture.00226; DOI:10.57760/sciencedb.agriculture.00226; |
经费支持 | 新一代人工智能国家科技重大专项(2021ZD0113705)。 |
王彦芳 , 鲜国建 , 赵瑞雪 . 基于人工标注与对比生成模型的玉米叶病图文多模态数据集[J]. 农业大数据学报, 2025 , 7(3) : 371 -378 . DOI: 10.19788/j.issn.2096-6369.100060
Accurately identifying corn leaf diseases is an important part of intelligent agricultural management. The existing maize disease data sets have problems such as uneven quality, fuzzy label categories, and lack of multimodal data, especially the scarcity of disease description data in the Chinese context. This data set integrates the image data of corn disease from open source platforms such as AI Challenger, PlantVillage and OpenDataLab, and complements the high-definition disease images collected in the field. A Chinese multimodal data set containing 1653 images is constructed. Each image has its corresponding diagnostic text description, covering key information such as disease type, disease characteristics and severity. At the same time, the cn-clip and CPT2 Chinese large model are combined to achieve image description generation, which provides a method for automatic annotation. This data set can provide high-quality data support for the development of an intelligent diagnosis model of corn disease, the generation of Chinese image description and the construction of an agricultural multimodal knowledge map.
Data summary:
Item | Description |
---|---|
Dataset name | Image-Text Multi-Modal Dataset of Corn Leaf Diseases based on Manual Annotation and Contrast Generation Model |
Specific subject area | Agricultural Science, Computer Science |
Research topic | Computer vision, Cross-modal retrieval, Image captioning |
Data types and technical formats | .jpg |
Dataset structure | The dataset is composed of two parts: image data of corn leaf disease and corresponding text description data, including: 1. the original image data set of leaf disease, including 9 typical disease image data, including large leaf spot, small leaf spot, brown spot, Curvularia leaf spot, common rust, southern rust, gray spot, round spot and dwarf mosaic, with a total of 1653 pieces; 2. the diagnostic text description corresponding to the image has an average length of about 32 characters, a total of 1653. |
Volume of dataset | 3.87 GB |
Key index in dataset | Image and its corresponding description text |
Data accessibility | CSTR:17058.11.sciencedb.agriculture.00226; DOI:10.57760/sciencedb.agriculture.00226; |
Financial support | National Science and Technology Major Project(2021ZD0113705). |
Key words: corn; leaf diseases; multimodal data set; image description; automatic annotation
[1] | The Freezone Channel. FAO says plant diseases robs global economy of $220bn. (2021-06-03)[2025-04-08]. https://thefreezonechannel.com/2021/06/03/fao-says-plant-diseases-robs-global-economy-of-220bn/. |
[2] | 王晓杰, 甘鹏飞, 汤春蕾, 等. 植物抗病性与病害绿色防控:主要科学问题及未来研究方向. 中国科学基金, 2020, 34(4):381-392. |
WANG X, GAN P, TANG C, et al. Plant disease resistance and disease green prevention and control:major scientific issues and future research directions. Bulletin of National Natural Science Foundation of China, 2020, 34(4):381-392. | |
[3] | HUGHES D P, SALATHE M. An open access repository of images on plant health to enable the development of mobile disease diagnostics. Computer Science, 2015.DOI:10.48550/arXiv.1511.08060. |
[4] | WANG X, CAO W. GACN: Generative adversarial classified network for balancing plant disease dataset and plant disease recognition. Sensors, 2023, 23(15).DOI:10.3390/s23156844. |
[5] | AHMAD A, SARASWAT D, GAMAL A E, et al. CD&S Dataset: Handheld imagery dataset acquired under field conditions for corn disease identification and severity estimation. arXiv, 2021. DOI:10.48550/arXiv.2110.12084. |
[6] | ZHOU H, HU Y, LIU S, et al. A precise framework for rice leaf disease image-text retrieval using FHTW-Net. Plant Phenomics, 2024, 6:0168. DOI: 10.34133/plantphenomics.0168. |
[7] | GU J, MENG X, LU G, et al. Wukong: 100 Million Large-scale Chinese cross-modal pre-training dataset and a foundation framework. arXiv,2022:2202.06767. https://arxiv.org/abs/2202.06767. |
[8] | LI X R, XU C X, WANG X X, et al. COCO-CN for cross-lingual image tagging, captioning and retrieval. IEEE Transactions on Multimedia, 2019, 21(9):2347-2360.DOI:10.1109/TMM.2019.2896494. |
[9] | LI X, LAN W, DONG J, et al. Adding Chinese captions to images// Acm on International Conference on Multimedia Retrieval.ACM, 2016. DOI:10.1145/2911996.2912049. |
[10] | 高鸿生, 王凤葵. 病虫害田间诊断口袋书-玉米病虫害诊治图册. 北京: 机械工业出版社, 2017. |
GAO H, WANG F. Field Diagnosis Pocket Book of Diseases And Insect Pests - Atlas of diagnosis and treatment of corn diseases and insect pests. Beijing: China Machine Press, 2017. | |
[11] | 农业学术服务平台-作物病虫草害数据. (2019-07-08)[2025-04-08]. https://agri.nais.net.cn/specialtyresources/list19-1.html. |
AgriScholar - Crop Diseases,Pests and Weeds Dataset. (2019-07-08) [2025-04-08]. https://agri.nais.net.cn/specialtyresources/list19-1.html. | |
[12] | YANG A, PAN J, LIN J, et al. Chinese CLIP: Contrastive vision- language pretraining in Chinese. arXiv, 2023. DOI: 10.48550/arXiv.2211.01335. |
/
〈 |
|
〉 |