[1] |
LEHMANN P, AMMUNET T, BARTON M, et al. Complex responses of global insect pests to climate warming[J]. Frontiers in Ecology and the Environment, 2020, 18(3):141-150.
|
[2] |
HADDI K, TURCHEN L, JUMBO L, et al. Rethinking biorational insecticides for the pest management: Unintended effects and consequences[J]. Pest Management Science. 2020, 76(7):2286-2293.
|
[3] |
FILHO F, HELDENS W, KONG Z, et al. Drones: Innovative technology for use in precision pest management[J]. Journal of Economic Entomology, 2020, 113(1):1-25.
doi: 10.1093/jee/toz268
pmid: 31811713
|
[4] |
THENMOZHI K, REDDY U. Crop pest classification based on deep convolutional neural network and transfer learning[J]. Computers and Electronics in Agriculture, 2019, 164:104906.
|
[5] |
周国民. 迎接农业农村领域数字经济的提速发展[J]. 农业大数据学报, 2023, 5(1): 1-1.
doi: 10.19788/j.issn.2096-6369.230101
|
[6] |
DAWEI W, LIMIAO D, JIANGONG N, et al. Recognition pest by image‐based transfer learning[J]. Journal of the Science of Food and Agriculture, 2019, 99(10): 4524-4531.
|
[7] |
JIN X, TAO Z, KONG J. Multi-stream aggregation network for fine-grained crop pests and diseases image recognition[J]. International Journal of Cybernetics and Cyber-Physical Systems, 2020, 1(1):52-67.
|
[8] |
周国民. 我国农业大数据应用进展综述[J]. 农业大数据学报, 2019, 1(1): 16-23.
doi: 10.19788/j.issn.2096-6369.190102
|
[9] |
张凌栩, 韩锐, 李文明, 等. 大数据深度学习系统研究进展与典型农业应用[J]. 农业大数据学报, 2019, 1(2): 88-104.
doi: 10.19788/j.issn.2096-6369.190208
|
[10] |
YANG G, CHEN G, LI C, et al. Convolutional rebalancing network for the classification of large imbalanced rice pest and disease datasets in the field[J]. Frontiers in Plant Science, 2021, 12:671134.
|
[11] |
LIU J, WANG X, MIAO W, et al. Tomato pest recognition algorithm based on improved yolov4[J]. Frontiers in Plant Science, 2022, 13: 814681.
|
[12] |
LIU B, DING Z, TIAN L, et al. Grape leaf disease identification using improved deep convolutional neural networks[J]. Frontiers in Plant Science, 2020, 11: 1082.
doi: 10.3389/fpls.2020.01082
pmid: 32760419
|
[13] |
GU Y, YIN H, JIN D, et al. Image-based hot pepper disease and pest diagnosis using transfer learning and finetuning[J]. Frontiers in Plant Science. 2021, 12: 724487.
|
[14] |
DAI G, FAN J, DEWI C. ITF-WPI: Image and text based cross-modal feature fusion model for wolfberry pest recognition[J]. Computers and Electronics in Agriculture. 2023, 212:108129.
|
[15] |
YANG G, HE Y, YANG Y, et al. Fine-grained image classification for crop disease based on attention mechanism[J]. Frontiers in Plant Science, 2020, 11: 600854.
|
[16] |
YANG J, ZHANG F, QIAN T. Attention-based hierarchical convolution neural network for fine-grained crop image classification[C]// 2020 International Conferences on Internet of Things, 2020: 106-112.
|
[17] |
ZHANG X, GAO H, WAN L. Classification of fine-grained crop disease by dilated convolution and improved channel attention module[J]. Agriculture, 2020, 12(10):1727.
|
[18] |
ZENG Q, NIU L, WANG S, et al. SEViT: a large-scale and fine-grained plant disease classification model based on transformer and attention convolution[J]. Multimedia Systems, 2022, 29(3): 1001-1010.
|
[19] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[OL]. arXiv:2010.11929. DOI:10.48550/arXiv.2010.11929.
|
[20] |
WAH C, BRANSON S, WELINDER P, et al. The caltech-ucsd birds-200-2011 dataset[J]. 2011.
|
[21] |
WU X, ZHAN C, LAI Y, et al. Ip102: A large-scale benchmark dataset for insect pest recognition[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 8779-8788.
|
[22] |
陈磊, 刘立波, 王晓丽. 2020年宁夏枸杞虫害图文跨模态检索数据集[J]. 中国科学数据, 2022, 7(3):149-156.
|
[23] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017.
|
[24] |
孙露露, 刘建平, 王健, 等. 细粒度图像分类上Vision Transformer的发展综述[J]. 计算机工程与应用, 2024, 60(10):30-46.
doi: 10.3778/j.issn.1002-8331.2310-0395
|
[25] |
BERA A, WHARTON Z, LIU Y, et al. SR-GNN: Spatial relation-aware graph neural network for fine-grained image categorization[C]// IEEE Transactions on Image Processing, 2022. 31: 6017-6031. DOI: 10.1109/TIP.2022.3205215.
|
[26] |
LIU H, ZHANG C, XIE B, et al. Affinity relation-aware fine-grained bird image recognition for robot vision tracking via transformers[C]// 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), Jinghong, China, 2022: 662-667. DOI: 10.1109/ROBIO55434.2022.10011861.
|
[27] |
ZHANG Z C, CHEN Z D, WANG Y, et al. ViT-FOD: A vision transformer based fine-grained object discriminator[OL].arXiv: 2203. 12816.
|
[28] |
XU Q, WANG J, JIANG B, et al. Fine-grained visual classification via internal ensemble learning transformer[J]. IEEE Transactions on Multimedia, 2023, 25:9015-9028. DOI: 10.1109/TMM.2023.3244340.
|
[29] |
LIU H, ZHANG C, DENG Y, et al. TransIFC: Invariant cues-aware feature concentration learning for efficient fine-grained bird image classification[OL]. IEEE Transactions on Multimedia. DOI: 10.1109/TMM.2023.3238548.
|
[30] |
李佳盈, 蒋文婷, 杨林, 等. 基于ViT的细粒度图像分类[J]. 计算机工程与设计, 2023, 44(3):916-921.
|
[31] |
WANG Q, WANG J, DENG H, et al. AA-trans: Core attention aggregating transformer with information entropy selector for fine-grained visual classification[J]. Pattern Recognition, 2023, 140: 109547. https://doi.org/10.1016/j.patcog.2023.109547.
|
[32] |
SUN H, HE X, PENG Y. SIM-Trans: Structure information modeling transformer for fine-grained visual categorization[C]// Proceedings of the 30th ACM International Conference on Multimedia. 2022: 5853-5861.
|
[33] |
HE J, CHEN J, LIU S, et al. TransFG: A transformer architecture for fine-grained recognition[C]// Proceedings of the AAAI conference on artificial intelligence. 2022, 36(1): 852-860.
|
[34] |
WANG J, YU X, GAO Y. Feature fusion vision transformer for fine-grained visual categorization[J]. arXiv preprint arXiv:2107.02341, 2021.
|
[35] |
HU X, ZHU S, PENG T. Hierarchical attention vision transformer for fine-grained visual classification[J]. Journal of Visual Communication and Image Representation, 2023. 91: 103755. https://doi.org/10.1016/j.jvcir.2023.103755.
|
[36] |
DIAO Q, JIANG Y, WEN B, et al. Metaformer: A unified meta framework for fine-grained recognition[OL]. arXiv:2203.02751.
|
[37] |
TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers distillation through attention[OL]. arXiv:2012.12877.
|