[1] |
Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors.[J]. Trends in Plant Science, 2000, 5(5): 199-206.
doi: 10.1016/s1360-1385(00)01600-9
pmid: 10785665
|
[2] |
Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Archiv Für Ophthalmologie, 1994, 244(6): 563-571.
|
[3] |
Zhao N, He M, Li L, et al. Identification and expression analysis of WRKY gene family under drought stress in peanut (Arachis hypogaea L.)[J]. PLoS ONE, 2020, 15(4): e0231396.
doi: 10.1371/journal.pone.0231396
|
[4] |
Ralf Oelmüller. WRKY transcription factors[J]. Trends in Plant Science, 2014, 15(5): 247-58.
doi: 10.1016/j.tplants.2010.02.006
|
[5] |
Wu J, Chen J B, Wang L F, et al. Genome-Wide Investigation of WRKY Transcription Factors Involved in Terminal Drought Stress Response in Common Bean[J]. Frontiers in Plant Science, 2017, 8: 380.
doi: 10.3389/fpls.2017.00380
pmid: 28386267
|
[6] |
Li M Y, Xu Z S, Tian C, et al. Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants[J]. Scientific reports, 2016, 6: 23101.
doi: 10.1038/srep23101
|
[7] |
Abdul K, Jiang Y G, Guo L, et al. Isolation and characterization of a subgroup IIa WRKY transcription factor PtrWRKY40 from Populus trichocarpa[J]. Tree Physiology, 2015, 35(10): 1129-1139.
doi: 10.1093/treephys/tpv084
pmid: 26423133
|
[8] |
Pillai Shakuntala E, Kumar Chandan, Patel Hitendra K, et al. Overexpression of a cell wall damage induced transcription factor, OsWRKY42, leads to enhanced callose deposition and tolerance to salt stress but does not enhance tolerance to bacterial infection. BMC plant biology, 2018, 18(1): 177.
doi: 10.1186/s12870-018-1391-5
pmid: 30176792
|
[9] |
Jiang Y, Tong S, Chen N, et al. The PalWRKY77 transcription factor negatively regulates salt tolerance and abscisic acid signaling in Populus[J]. The Plant Journal, 2021. 105(5): 1258-1273.
doi: 10.1111/tpj.15109
pmid: 33264467
|
[10] |
Zhang M F, Zhu Y F, Yang H B, et al. CsNIP5;1 acts as a multifunctional regulator to confer water loss tolerance in citrus fruit[J]. Plant science: an international journal of experimental plant biology, 2021, 316: 111150.
|
[11] |
Lim C, Kang K, Shim Y, et al. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways[J]. Plant Physiology, 2021. 188(4):1900-1916.
doi: 10.1093/plphys/kiab492
pmid: 34718775
|
[12] |
Zhen X, Zhang Z L, Zou X, et al. Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells[J]. Plant Journal, 2010, 46(2): 231-242.
doi: 10.1111/tpj.2006.46.issue-2
|
[13] |
Hwang S H, Kwon S I, Jang J Y, et al. OsWRKY51, a rice transcription factor, functions as a positive regulator in defense response against Xanthomonas oryzae pv. oryzae[J]. Plant Cell Reports, 2016, 35(9):1975-1985.
doi: 10.1007/s00299-016-2012-0
|
[14] |
Cheng Y, Zhou Y, Yang Y, et al. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors[J]. Plant Physiology, 2012, 159(2): 810-825.
doi: 10.1104/pp.112.196816
pmid: 22535423
|
[15] |
Hu Y R, Chen L G, Wang H P, et al. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance[J]. The Plant journal: for cell and molecular biology, 2013, 74(5).
|
[16] |
Bouchenak Malika, Lamri-Senhadji Myriem. Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review[J]. Journal of medicinal food, 2013, 16(3).
|
[17] |
Ross C A, Liu Y, Shen Q J. The WRKY Gene Family in Rice (Oryza sativa)[J]. Journal of Integrative Plant Biology, 2007, 49(6): 827-842.
doi: 10.1111/j.1744-7909.2007.00504.x
|
[18] |
魏晓爱, 姚文静, 姜廷波, 等. 拟南芥WRKY基因家族应答非生物胁迫基因的鉴定[J]. 东北林业大学学报, 2016, 44(10): 45-48+55.
|
|
Wei X A, Yao W J, Jiang T B, et al. Identification of WRKY Gene in response to Abiotic Stress from WRKY Transcription Factor Gene Family of Arabidopsis thaliana[J]. Journal of Northeast forestry University, 2016, 44(10): 45-48+55. (in Chinese)
|
[19] |
Song H, Wang P, Hou L, et al. Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean[J]. Frontiers in Plant Science, 2016, 7: 9.
doi: 10.3389/fpls.2016.00009
pmid: 26870047
|
[20] |
Ning P, Liu C, Kang J, et al. Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit condition[J]. Peer J, 2017, 5: e3232.
doi: 10.7717/peerj.3232
|
[21] |
Finn R D, Bateman A, Clements J, et al. Pfam: the protein families database. Nucleic Acids Res 2014, 42: 222-230.
|
[22] |
陈乃钰, 赵贺, 蒋慧欣, 等. 五种豆科植物WRKY基因家族全基因组鉴定及表达分析[DB/OL]. 农业农村科学数据仓储. https://www.scidb.cn/en/anonymous/VUYzaXl1.
|
[23] |
Kohli D K, Bachhawat A K. CLOURE: Clustal Output Reformatter, a program for reformatting ClustalX/ClustalW outputs for SNP analysis and molecular systematics[J]. Nucleic Acids Research, 2003, 31(13): 3501-3502.
pmid: 12824353
|
[24] |
Sharma A, Thakur R S, Jaloree S. Phylogenetic Tree Construction of Bacterial Species using Clustering Algorithms In MEGA 7[J]. International Journal of Computer Sciences and Engineering, 2019, 7(5): 1154-1157.
doi: 10.26438/ijcse
|
[25] |
Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics. Genome Res, 2009, 19: 1639-1645.
doi: 10.1101/gr.092759.109
pmid: 19541911
|
[26] |
Li W H, Gojobori T, Nei M. Pseudogenes as a paradigm of neutral evolution[J]. Nature, 1981, 292(5820): 237-239.
doi: 10.1038/292237a0
|
[27] |
Xu L, Qiao X, Zhang M, et al. Genome-Wide analysis of aluminum-activated malate transporter family genes in six rosaceae species, and expression analysis and functional characterization on malate accumulation in Chinese white pear.[J]. Plant Science, 2018, 24(3): 431-442.
|
[28] |
Lescot M. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327.
doi: 10.1093/nar/30.1.325
pmid: 11752327
|
[29] |
Chen C J, Chen H, Zhang Y, et al. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data[J]. Molecular Plant, 2020, 13(8): 1194-1202..
doi: S1674-2052(20)30187-8
pmid: 32585190
|
[30] |
Jing G, Ade A S, Glenn T V, et al. Integrating and annotating the interactome using the MiMI plugin for cytoscape[J]. Bioinformatics, 2009(1): 137-138.
doi: 10.1093/bioinformatics/btn501
pmid: 18812364
|
[31] |
Trapnell C, Pachter L, Salzberg S L. TopHat: discovering splice junctions with RNA-Seq[J]. Bioinformatics, 2009, 25(9): 1105-1111.
doi: 10.1093/bioinformatics/btp120
pmid: 19289445
|
[32] |
Trapnell C, Williams B A, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nat Biotech, 2010, 28(5): 511-515.
doi: 10.1038/nbt.1621
|
[33] |
Goodstein D M, Shu S, Russell H, et al. Phytozome: a comparative platform for green plant genomics[J]. Nucleic Acids Research, 2012(D1): D1178-D1186.
|
[34] |
何玉格, 赵东波, 姜谦. 马铃薯WRKY基因家族的鉴定与表达分析[J]. 分子植物育种: 1-12.
|
|
He Y G, Zhao D B, Jiang Q, et al. Analysis of WRKY Transcription Factors in Potato[J]. Molecular Plant Breeding: 1-12. (in Chinese)
|
[35] |
张宇欣, 刘征, 张唐权, 等. 空心菜WRKY基因家族成员鉴定与表达分析[J]. 分子植物育种, 2023, 21(1): 55-66.
|
|
Zhang Y X, Liu Z, Zhang T Q, et al. Genome-wide Identification and Expression Analysis of WRKY Gene Family in Water Spinach (Ipomoea aquatica)[J]. Molecular Plant Breeding, 2023, 21(1): 55-66. (in Chinese)
|
[36] |
郝青婷, 高伟, 闫虎斌, 等. 绿豆WRKY基因家族的全基因组鉴定及生物信息学分析[J]. 西北农林科技大学学报(自然科学版), 2023(05): 1-14.
|
|
Hao Q T, Gao W, Yan H B, et al. Genome-wide identification and bio-informatics analysis of WRKY gene family in Vigna radiata[J]. Journal of Northwest A&F University(Nat. Sci. Ed.), 2023(5): 1-14. (in Chinese)
|
[37] |
Zheng J, Zhang Z, Tong T, et al. Genome-Wide Identification of WRKY Gene Family and Expression Analysis under Abiotic Stress in Barley[J]. Agronomy, 2021, 11(3): 521.
doi: 10.3390/agronomy11030521
|
[38] |
Huang K, Wu T, Ma Z, et al. Rice Transcription Factor OsWRKY55 Is Involved in the Drought Response and Regulation of Plant Growth[J]. International journal of molecular sciences, 2021, 22(9).
|
[39] |
Liu Q N, Liu Y, Xin Z Z, et al. Genome-wide identification and characterization of the WRKY gene family in potato (Solanum tuberosum)[J]. Biochemical Systematics and Ecology, 2017, 71: 212-218.
doi: 10.1016/j.bse.2017.02.010
|
[40] |
Zhang Y J, Wang L J. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants[J]. BMC Evolutionary Biology, 2005, 5(1): 1.
doi: 10.1186/1471-2148-5-1
|
[41] |
Zhao X, Yang J, Li G, et al. Genome-wide identification and comparative analysis of the WRKY gene family in aquatic plants and their response to abiotic stresses in giant duckweed (Spirodela polyrhiza)[J]. Genomics, 2021, 113(4):1761-1777.
doi: 10.1016/j.ygeno.2021.03.035
pmid: 33862182
|
[42] |
Wang L F, Jia G H, Jiang X Y, et al. Altered chromatin architecture and gene expression during polyploidization and domestication of soybean[J]. The Plant Cell, 2021, 33(5): 1430-1446.
doi: 10.1093/plcell/koab081
pmid: 33730165
|
[43] |
Tao H, Miao H, Chen L, et al. WRKY33-mediated indolic glucosinolate metabolic pathway confers resistance against Alternaria brassicicola in Arabidopsis and Brassica crops[J]. Journal of integrative plant biology, 2022, 64(5): 13.
|
[44] |
Sheikh A H, Lennart E L, Pascal P, et al. Regulation of WRKY46 Transcription Factor Function by Mitogen-Activated Protein Kinases in Arabidopsis thaliana[J]. Front Plant, 2016, 7: 61.
|
[45] |
Zhou Q Y, Tian A G, Zou H F, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnol ogy Journal, 2008, 6(5): 486-503.
|
[46] |
Wu M, Liu H L, Han G M, et al. A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants. Scientific reports, 2017, 7(1): 11721.
doi: 10.1038/s41598-017-10795-z
pmid: 28916739
|
[47] |
Wu J, Chen J B, Wang L F, et al. Genome-wide investigation of WRKY transcription factors involved in terminal drought stress response in common bean[J]. Frontiers in Plant Science, 2017, 8: 380.
doi: 10.3389/fpls.2017.00380
pmid: 28386267
|
[48] |
Khandal H, GuptaS K, Dwivedi V. et al. Root‐specific expression of chickpea cytokinin oxidase/dehydrogenase 6 leads to enhanced root growth, drought tolerance and yield without compromising nodulation[J]. Plant biotechnology journal, 2022, 18(11): 2225-2240.
doi: 10.1111/pbi.v18.11
|