[1] |
F.P.Oliveira Luiz, P. Moreira António, F.Silva Manuel. Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead[J]. Robotics, 2021, 10(2): 52-52.
doi: 10.3390/robotics10020052
|
[2] |
刘成良, 贡亮, 苑进, 等. 农业机器人关键技术研究现状与发展趋势[J]. 农业机械学报, 2022, 53(7): 1-22, 55.
|
|
Liu C L, Gong L, Yuan J, et al. Current Status and Development Trends of Agricultural Robots[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 1-22, 55. (in Chinese)
|
[3] |
何雄奎. 植保精准施药技术装备[J]. 农业工程技术, 2017, 37(30): 22-26.
|
|
He X K. Plant protection precision pesticide application technology and equipment[J]. Agricultural Engineering Technology, 2017, 37(30): 22-26. (in Chinese)
|
[4] |
何雄奎. 我国植保无人机喷雾系统与施药技术[J]. 农业工程技术, 2018, 38(9): 33-38.
|
|
He X K. Spray system and application technology of plant protection UAV in China[J]. Agricultural Engineering Technology, 2018, 38(9): 33-38. (in Chinese)
|
[5] |
何雄奎. 中国精准施药技术和装备研究现状及发展建议[J]. 智慧农业(中英文), 2020, 2(1): 133-146.
doi: 10.12133/j.smartag.2020.2.1.201907-SA002
|
|
He X K. Research progress and developmental recommendations on precision spraying technology and equipment in China[J]. Smart Agriculture, 2020, 2(1): 133-146. (in Chinese)
doi: 10.12133/j.smartag.2020.2.1.201907-SA002
|
[6] |
翟长远, 朱瑞祥, 张佐经, 等. 精准施药技术现状分析[J]. 农机化研究, 2010, 32(5): 9-12.
|
|
Zhai C Y, Zhu R X, Zhang Z J, et al. Status Analysis of Precision Pesticide Application Techniques[J]. Journal of Agricultural Mechanization Research, 2010, 32(5): 9-12. (in Chinese)
|
[7] |
傅泽田, 祁力钧, 王俊红. 精准施药技术研究进展与对策[J]. 农业机械学报, 2007, 38(1): 189-192.
|
|
Fu Z T, Qi L J, Wang J H. Developmental Tendency and Strategies of Precision Pesticide Application Techniques[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(1): 189-192. (in Chinese)
|
[8] |
杨征鹤, 杨会民, 喻晨, 等. 设施蔬菜自动对靶喷药技术研究现状与分析[J]. 新疆农业科学, 2021, 58(8): 1547-1557.
doi: 10.6048/j.issn.1001-4330.2021.08.022
|
|
Yang Z H, Yang H M, Yu C, et al. Research Status and Analysis of Automatic Target Spraying Technology for Facility Vegetables[J]. Xinjiang Agricultural Sciences, 2021, 58(8): 1547-1557. (in Chinese)
doi: 10.6048/j.issn.1001-4330.2021.08.022
|
[9] |
Y. Tian, C. Zhao, S. Lu, et al. Multiple classifier combination for recognition of wheat leaf diseases[J]. Intelligent Automation & Soft Computing, 2011, 17(5): 519-529.
|
[10] |
S.P. Mohanty, D.P Hughes, M. Salathé. Using deep learning for image-based plant disease detection.[J]. Frontiers in Plant Science, 2016, 7(1): 1419-1419.
doi: 10.3389/fpls.2016.01419
|
[11] |
L.G. Tian, Y. Liu, M. Li, et al. Research on plant diseases and insect pests identification based on cnn[J]. Iop Conference Series: Earth and Environmental Science, 2020, 594(1): 012009.
doi: 10.1088/1755-1315/594/1/012009
|
[12] |
D. Li, R. Wang, C. Xie, et al. A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network[J]. Sensors, 2020, 20(3): 578-578.
doi: 10.3390/s20030578
|
[13] |
柴阿丽. 基于计算机视觉和光谱分析技术的蔬菜叶部病害诊断研究[D]. 北京: 中国农业科学院, 2011. (in Chinese)
|
|
Cai A L. Study on Diagnosis of Vegetable Foliage Diseases Based on Computer Vision and Spectral Analysis[D]. Beijing: China Academy of Agricultural Sciences, 2011.
|
[14] |
秦淑芳. 基于图像处理技术的甘蓝型油菜的虫害程度检测[D]. 武汉: 武汉轻工大学, 2019.
|
|
Qin S F. Brassica Napus L. Pest Detection Based on Image Processing Technology[D]. Wuhan: Wuhan Polytechnic University, 2019. (in Chinese)
|
[15] |
宋玲, 曹勉, 胡小春, 等. 基于YOLOX的复杂背景下木薯叶病害检测方法[J]. 农业机械学报, 2023, 54(3): 301-307.
|
|
Song L, Cao M, Hu X C, et al. Detection of Cassava Leaf Diseases under Complicated Background Based on YOLOX[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 301-307. (in Chinese)
|
[16] |
王卫星, 刘泽乾, 高鹏, 等. 基于改进YOLOv4的荔枝病虫害检测模型[J/OL]. 农业机械学报. https://kns.cnki.net/kcms/detail/11.1964.S.20230327.1732.004.html
|
|
Wang W X, Liu Z Q, Gao P, et al. Detection of Litchi Diseases and Insect Pests Based on Improved YOLOv4 Model[J/OL]. Transactions of the Chinese Society for Agricultural Machinery. https://kns.cnki.net/kcms/detail/11.1964.S.20230327.1732.004.html. (in Chinese)
|
[17] |
林芬芳, 陈星宇, 周维勋, 等. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J/OL]. 作物学报. https://kns.cnki.net/kcms/detail//11.1809.S.20230228.0956.002.html
|
|
Lin F F, Chen X Y, Zhou W X, et al. Hyperspectral remote sensing detection of Fusarium Head Blight in wheat based on the stacked sparse auto-encoder algorithm[J/OL]. Acta Agronomica Sinica. https://kns.cnki.net/kcms/detail//11.1809.S.20230228.0956.002.html. (in Chinese)
|
[18] |
彭红星, 何慧君, 高宗梅, 等. 基于改进ShuffleNetV2模型的荔枝病虫害识别方法[J]. 农业机械学报, 2022, 53(12): 290-300.
|
|
Peng H X, He H J, Gao Z M, et al. Litchi Diseases and Insect Pests Identification Method Based on Improved ShuffleNetV2[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(12): 290-300. (in Chinese)
|
[19] |
D. Stajnko, P. Berk, M. Lesnik, et al. Programmable ultrasonic sensing system for targeted spraying in orchards[J]. Sensors, 2012, 12(11): 15500-15519.
doi: 10.3390/s121115500
pmid: 23202220
|
[20] |
M. Garrido, M. Perez-Ruiz, C. Valero, et al. Active optical sensors for tree stem detection and classification in nurseries[J]. Sensors, 2014, 14(6): 10783-10803.
doi: 10.3390/s140610783
pmid: 24949638
|
[21] |
J. Llorens, E. Gil, J. Llop, et al. Ultrasonic and lidar sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods[J]. Sensors, 2011, 11(2): 2177-2194.
doi: 10.3390/s110202177
pmid: 22319405
|
[22] |
赵源深. 西红柿采摘机器人目标识别、定位与控制技术研究[D]. 上海: 上海交通大学, 2018.
|
|
Zhao S Y. Research on the Technologies of Target Recognition, Localization and Control for Tomato Harvesting Robot[D]. Shanghai: Shanghai Jiao Tong University, 2018. (in Chinese)
|
[23] |
陆江. 基于PLC的红外对靶自动喷雾装置的研制及试验[D]. 南京: 南京农业大学, 2013.
|
|
Lu J. The Development of Automatic Target-activated Spraying Device Based on PLC[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
|
[24] |
Zaidner G, Shapiro A. A novel data fusion algorithm for low-cost localisation and navigation of autonomous vineyard sprayer robots[J]. Biosystems Engineering, 2016, 146(1): 113-148.
|
[25] |
Belter D, Labecki P, Skrzypczyński P. Adaptive motion planning for autonomous rough terrain traversal with a walking robot[J]. Journal of Field Robotics, 2016, 33(3): 337-370.
doi: 10.1002/rob.2016.33.issue-3
|
[26] |
Bonev B, Cazorla M, Martín F, et al. Portable autonomous walk calibration for 4-legged robots[J]. Applied Intelligence, 2012, 36(1): 136-147.
doi: 10.1007/s10489-010-0249-9
|
[27] |
Ion I, Gavan M, Curaj A, et al. Adaptation to rough terrains by using force sensing on the MERO modular walking robots[J]. Applied Mechanics and Materials, 2015, 3879(762): 147-154.
|
[28] |
牛雪梅, 高国琴, 鲍智达, 等. 基于滑模变结构控制的温室喷药移动机器人路径跟踪[J]. 农业工程学报, 2013, 29(2): 9-16.
|
|
Niu X M, Gao G Q, Bao Z D, et al. Path tracking of mobile robots for greenhouse spraying controlled by sliding mode variable structure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 9-16. (in Chinese)
|
[29] |
张宾, 陈志清, 宋健. 自走式喷雾机自动控制系统的研制[J]. 农机化研究, 2004, 44(6): 115-118.
|
|
Zhang B, Chen Z Q, Song J. Development of sprayer control system[J]. Journal of Agricultural Mechanization Research, 2004, 44(6): 115-118. (in Chinese)
|
[30] |
Wang F J. Control System Design of Spraying Robot[C]. 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering (CCTAE 2010):Institute of Electrical and Electronics Engineers, Inc., 2010: 23-26.
|
[31] |
T. Utstumo, F. Urdal, A. Brevik, et al. Robotic in-row weed control in vegetables[J]. Computers and Electronics in Agriculture, 2018, 154(8): 36-45.
doi: 10.1016/j.compag.2018.08.043
|
[32] |
F.C. Páez, V.J. Rincón, J.S. Hermosilla, et al. Implementation of a low-cost crop detection prototype for selective spraying in greenhouses[J]. Precision Agriculture, 2017, 18(6): 1011-1023.
doi: 10.1007/s11119-017-9522-9
|
[33] |
何雄奎, 严苛荣, 储金宇, 等. 果园自动对靶静电喷雾机设计与试验研究[J]. 农业工程学报, 2003, 19(6): 78-80.
|
|
He X K, Yan K R, Chu J Y, et al. Design and testing of the automatic target detecting, electrostatic, air assisted, orchard sprayer[J]. Transactions of The Chinese Society of Agricultural Engineering, 2003, 19(6): 78-80. (in Chinese)
|
[34] |
姜红花, 白鹏, 刘理民, 等. 履带自走式果园自动对靶风送喷雾机研究[J]. 农业机械学报, 2016, 47(S1): 189-195.
|
|
Jiang H H, Bai P, Liu L M, et al. Caterpillar Self-propelled and Air-assisted Orchard Sprayer with Automatic Target Spray System[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 189-195. (in Chinese)
|
[35] |
权龙哲, 王建森, 奚德君, 等. 靶向灭草机器人药液喷洒空气动力学模型建立与验证[J]. 农业工程学报, 2017, 33(15): 72-80.
|
|
Quan L Z, Wang J S, Xi D J, et al. Aerodynamics modeling and validation on liquid medicine spraying of target weeding robot[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 72-80. (in Chinese)
|
[36] |
许林云, 张昊天, 张海锋, 等. 果园喷雾机自动对靶喷雾控制系统研制与试验[J]. 农业工程学报, 2014, 30(22): 1-9.
|
|
Xu L Y, Zhang H T, Zhang H F, et al. Development and experiment of automatic target spray control system used in orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22): 1-9. (in Chinese)
|
[37] |
颜杰. 温室遥控对靶喷雾机控制系统设计与试验研究[D]. 镇江: 江苏大学, 2017.
|
|
Yan J. Design and Experimental Study of Control System for Target Sprayer in Greenhouse[D]. Zhenjiang: Jiangsu University, 2017. (in Chinese)
|