[1] |
Yu J, Liu N. Texture-suppressed visual attention model for grain insects detection[C]. 2018 Joint 7th International Conference on Informatics, Electronics and Vision and 2nd International Conference on Imaging, Vision and Pattern Recognition, June 25-28 2018. Kitakyushu Japan, 2018: 349-352.
|
[2] |
Banga K, Kotwaliwale N, Mohapatra D, et al. Techniques for insect detection in stored food grains: an overview[J]. Food Control, 2018, 94: 167-176.
doi: 10.1016/j.foodcont.2018.07.008
|
[3] |
王贵财, 张德贤, 李保利, 等. 粮虫视觉检测技术的现状与展望[J]. 中国粮油学报, 2014, 29(4) : 124-128.
|
|
Wang G C, Zhang D X, Li B L, et al. Status and prospect of visual detection technology for grain insects[J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(4): 124-128. (in Chinese)
|
[4] |
卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1): 1-17. DOI: 10.16337/j.1004-9037.2016.01.001.
doi: 10.16337/j.1004-9037.2016.01.001
|
|
Lu HT, Zhang Q C. A review of research on the application of deep convolutional neural networks in computer vision[J]. Journal of Data Acquisition and Processing, 2016, 31(1):1-17. DOI:10.16337/j.1004-9037.2016.01.001. (in Chinese)
doi: 10.16337/j.1004-9037.2016.01.001
|
[5] |
Chen C H. Handbook of pattern recognition and computer vision(5th ed.)[M]. World Scientific Publishing Company, 2016.
|
[6] |
Jain A K, Mao J, Mohiuddin K M. Artificial neural networks: A tutorial[J]. Computer, 1996, 29(3): 31-44.
|
[7] |
Sebe N, Cohen I, Garg A, et al. Machine learning in computer vision[M]. Springer Science & Business Media, 2005.
|
[8] |
中国国家标准化管理委员会. GB/T 29890-2013 粮油储藏技术规范[S]. 北京: 中国标准出版社, 2014.
|
|
Standardization Administration of the P.R.C. GB/T 29890-2013 Technical specifications for grain and oil storage[S]. Beijing: China Standards Press, 2014. (in Chinese)
|
[9] |
Zhang J, Ma S, Sameki M, et al. Salient object subitizing[J]. International Journal of Computer Vision, 2017, 124(201): 169-186.
doi: 10.1007/s11263-017-1011-0
|
[10] |
于俊伟, 赵晨阳, 闫秋玲, 等.基于视觉显著性的虫粮等级判定方法和装置[P]. 河南省:CN112598664B,2023-02-07.
|
|
Yu J W, Zhao C Y, Yan Q L, et al. Method and apparatus for determining the grade of insect grain based on visual saliency[P]. Henan Province: CN112598664B,2023-02-07. (in Chinese)
|