[1] |
SCHÜßLER A, Schwarzott D, WALKER C. A new fungal phylum, the Glomeromycota: Phylogeny and evolution[J]. Mycological Research, 2001, 105(12): 1413-1421.
doi: 10.1017/S0953756201005196
|
[2] |
Jiang Y N, Wang W X, Xie Q J, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science, 2017, 356(6343): 1172-1175.
doi: 10.1126/science.aam9970
pmid: 28596307
|
[3] |
Wu Q S, Xia R X, Zou Y N, et al. Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress[J]. Acta Physiologiae Plantarum, 2007, 29(6): 543-549.
doi: 10.1007/s11738-007-0065-y
|
[4] |
Marulanda A, Porcel R, Barea J M, et al. Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive glomus species[J]. Microbial Ecology, 2007, 54(3): 543-552.
pmid: 17431706
|
[5] |
He Z Q, He C X, Zhang Z B, et al. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress[J]. Colloids and Surfaces B: Biointerfaces, 2007, 59(2): 128-133.
doi: 10.1016/j.colsurfb.2007.04.023
|
[6] |
Joner E J, Briones R, Leyval C, et al. Metal-binding capacity of arbuscular mycorrhizal mycelium[J]. Plant and Soil, 2000, 226(2): 227-234.
doi: 10.1023/A:1026565701391
|
[7] |
Guinee J B, Heijungs R, Huppes G, et al. Life cycle assessment: past, present, and future[J]. Environmental Science and Technology, 2011, 45(1): 90-96.
doi: 10.1021/es101316v
pmid: 20812726
|
[8] |
Mariotte P, Canarini A, Dijkstra F A. Stoichiometric N: P flexibility and mycorrhizal symbiosis favour plant resistance against drought[J]. The Journal of Ecology, 2017, 105(4): 958-967.
doi: 10.1111/jec.2017.105.issue-4
|
[9] |
Hammer E C, Forstreuter M, Rillig M C, et al. Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress[J]. Applied Soil Ecology, 2015, 96(1): 114-121.
doi: 10.1016/j.apsoil.2015.07.014
|
[10] |
Li H, Chen X W, Wu L, et al. Effects of arbuscular mycorrhizal fungi on redox homeostasis of rice under Cd stress[J]. Plant Soil, 2020, 455(1): 121-138.
doi: 10.1007/s11104-020-04678-y
|
[11] |
Wang M Y, Xia R X, Hu L M, et al. Arbuscular mycorrhizal fungi alleviate iron deficient chlorosis in Poncirus trifoliata L. Raf under calcium bicarbonate stress[J]. The Journal of Horticultural Science and Biotechnology, 2007, 82(5): 776-780.
doi: 10.1080/14620316.2007.11512304
|
[12] |
Pallara G, Todeschini V, Lingua G, et al. Transcript analysis of stress defence genes in a white poplar clone inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and grown on a polluted soil[J]. Plant Physiology and Biochemistry, 2013, 63(1): 131-139.
doi: 10.1016/j.plaphy.2012.11.016
|
[13] |
Guillon C, Starnaud M, Hamel C, et al. Differential and systemic alteration of defence-related gene transcript levels in mycorrhizal bean plants with rhizoctonia solani[J]. Canadian Journal of Botany, 2011, 80(3): 305-315.
doi: 10.1139/b02-015
|
[14] |
Berta G, Copetta A, Gamalero E, et al. Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth promoting pseudomonad in the field[J]. Mycorrhiza, 2014, 24(3): 161-170.
doi: 10.1007/s00572-013-0523-x
|
[15] |
Noceta P A, Bettenfeld P, Boussageon R, et al. Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production,alone or combined with plant growthpromoting bacteria[J]. Mycorrhiza, 2021, 31(6): 655-669.
doi: 10.1007/s00572-021-01054-1
|
[16] |
Parada J, Valenzuela T, Gómez F, et al. Effect of fertilization and arbuscular mycorrhizal fungal inoculation on antioxidant profiles and activities in Fragaria ananassa fruit[J]. Journal of the Science of Food and Agriculture, 2018, 99(3): 1397-1404.
doi: 10.1002/jsfa.2019.99.issue-3
|
[17] |
Egamberdieva D. Pseudomonas chlororaphis: a salt tolerant bacterial inoculant for plant growth stimulation under saline soil conditions[J]. Acta Physiologiae Plantarum, 2012, 34(2): 751-756.
doi: 10.1007/s11738-011-0875-9
|
[18] |
Egamberdieva D, Berg G, Lindström K, et al. Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas [J]. Plant and Soil, 2013, 369(1-2): 453-465.
doi: 10.1007/s11104-013-1586-3
|
[19] |
Egamberdieva D, Jabborova D, Berg G. Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation and nutrition of soybean under salt stress[J]. Plant and Soil, 2016, 405(1-2): 35-45.
doi: 10.1007/s11104-015-2661-8
|
[20] |
Zhou Y, Li X, Gao Y, et al. Plant endophytes and arbuscular mycorrhizal fungi alter plant competition[J]. Functional Ecology, 2018, 32(5): 1168-1179.
doi: 10.1111/fec.2018.32.issue-5
|
[21] |
Angela H. Microbial ecology of the arbuscular mycorrhiza[J]. FEMS Microbiology Ecology, 2000, 32(2): 91-96.
doi: 10.1111/j.1574-6941.2000.tb00702.x
pmid: 10817861
|
[22] |
杨柳, 李广枝, 童倩倩, 等. Pb2+、Cd2+胁迫作用下蚯蚓、菌根菌及其联合作用对植物修复的影响[J]. 贵州农业科学, 2010, 38(11): 156-158.
|
|
Yang L, Li G Z, Tong Q Q, et al. Effects of earthworm, mycorrhizal fungi and combined action on phytoremediation under Pb2+ and Cd2+ stress[J]. Guizhou Agricultural Sciences, 2010, 38(11): 156-158. (in Chinese)
|
[23] |
沈浜凯, 肖龙云, 冯乃杰, 等. 黄腐酸和真菌对玉米幼苗抗旱性的影响[J]. 江苏农业科学, 2013, 41(5): 64-66.
|
|
Shen B K, Xiao L Y, Feng N J, et al. Effects of fulvic acid and fungi on drought resistance of maize seedlings[J]. Jiangsu Agricultural Sciences, 2013, 41(5): 64-66. (in Chinese)
|
[24] |
韩亚楠, 刘润进, 李敏. AM真菌和PGPR菌剂组合对低温胁迫下黄瓜生长及防御酶活性的影响[J]. 中国蔬菜, 2014, 1(7): 35-39.
|
|
Han Y N, Liu R J, Li M. Effects of arbuscular mycorrhizal fungi and pgpr combination agents on growth and defense enzyme activity of cucumber under low temperature stress[J]. China Vegetables, 2014, 1(7): 35-39. (in Chinese)
|
[25] |
王丽丽, 杨谦. 接种枯草芽孢杆菌和丛枝菌根真菌促进红三叶修复石油污染土壤[J]. 江苏农业科学, 2016, 44(5): 526-529.
|
|
Wang L L, Yang Q. Inoculation with Bacillus subtilis and arbuscular mycorrhizal fungi promoted the remediation of oil contaminated soil by red clover[J]. Jiangsu Agricultural Sciences, 2016, 44(5): 526-529. (in Chinese)
|
[26] |
邢易梅, 蕫理, 战力峰, 等. 混合接种摩西球囊霉和根瘤菌对紫花苜蓿耐碱能力的影响[J]. 草业学报[J], 2020, 29(9): 136-145.
doi: 10.11686/cyxb2019509
|
|
Xing Y M, Dong L, Zhan L F, et al. Effect of mixed inoculation of Glomus mosseae and Sinorhizobium melilotion alkali resistance on alfalfa[J]. Prataculturae Sinica, 2020, 29(9): 136-145. (in Chinese)
doi: 10.11686/cyxb2019509
|
[27] |
闫智臣, 李应德, 程维佳, 等. 不同盐浓度下AM真菌和禾草内生真菌对多年生黑麦草生长的影响[J]. 草原与草坪, 2018, 38(1): 63-70.
|
|
Yan Z C, Li Y D, Cheng W J, et al. Effects of AM fungi and grass endophyte on the growth of ryegrass under different salt concentrations[J]. Grassland and Turf, 2018, 38(1): 63-70. (in Chinese)
|
[28] |
吴福勇, 武玉坤, 毕银丽, 等. 水分胁迫下AM真菌和根瘤菌对沙打旺生长及养分吸收的影响[J]. 干旱地区农业研究, 2013, 31(4): 161-166.
|
|
Wu F Y, Wu Y K, Bi Y L, et al. Inoculation of arbuscular mycorrhizal fungi and Rhizobium on the growth and nutrition uptake of Astragalus adsurgens Pall. Under water stress[J]. Agricultural Research in the Arid Areas, 2013, 31(4): 161-166. (in Chinese)
|
[29] |
刘耀臣, 陈可, 于伟红, 等. 水杨酸和AM真菌增强黄瓜耐低温的效应[J]. 北方园艺, 2020, 1(10): 10-15.
|
|
Liu Y C, Chen K, Yu W H, et al. Effects of salicylic acid and AM fungi on cucumber tolerance to low temperature[J]. Northern Horticulture, 2020, 1(10):10-15. (in Chinese)
|