[1] |
谭深, 吴炳方, 张鑫. 基于Google Earth Engine与多源遥感数据的海南水稻分类研究[J]. 地球信息科学学报, 2019, 21(6):937-947.
doi: 10.12082/dqxxkx.2019.180423.
|
[2] |
陈雨思, 李丹, 黎臻, 等. 多时相MODIS影像的黑龙江省水稻种植面积提取[J]. 农业工程学报, 2020, 36(23):201-208.
|
[3] |
李永帅, 齐修东. 基于Google Earth Engine三江平原水田提取研究[J]. 地理空间信息, 2021, 19(12):77-80+6.
|
[4] |
Dong J, Xiao X, Menarguez M A, et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine[J]. Remote Sensing of Environment, 2016, 185: 142-154. https://doi.org/10.1016/j.rse.2016.02.016.
doi: 10.1016/j.rse.2016.02.016
pmid: 28025586
|
[5] |
黄侠, 姜雪芹, 张灿, 等. 红边波段在水稻生育期识别中的应用研究[J]. 测绘地理信息, 2023, 48(3):87-90.
|
[6] |
Li P, Feng Z, Jiang L, et al. Changes in rice cropping systems in the Poyang Lake Region, China during 2004-2010[J]. Journal of Geographical Sciences, 2012, 22: 653-668. https://doi.org/10.1007/s11442-012-0954-x.
doi: 10.1007/s11442-012-0954-x
|
[7] |
黄青, 吴文斌, 邓辉. 2009年江苏省冬小麦和水稻种植面积信息遥感提取及长势监测[J]. 江苏农业科学, 2010(6):508-511.
|
[8] |
Yang H J, Pan B, Li N, et al. A systematic method for spatio-temporal phenology estimation of paddy rice using time series Sentinel-1 images[J]. Remote Sensing of Environment, 2021, 259: 112394. https://doi.org/10.1016/j.rse.2021.112394.
doi: 10.1016/j.rse.2021.112394
|
[9] |
Son N T, Chen C F, Chen C R, et al. A phenological object-based approach for rice crop classification using time-series Sentinel-1 Synthetic Aperture Radar (SAR) data in Taiwan[J]. International Journal of Remote Sensing, 2021, 42(7): 2722-2739. https://doi.org/10.1080/01431161.2020.1862440.
doi: 10.1080/01431161.2020.1862440
|
[10] |
Pan B, Zheng Y, Shen R, et al. High resolution distribution dataset of double-season paddy rice in China[J]. Remote Sensing, 2021, 13(22): 4609. https://doi.org/10.3390/rs13224609.
doi: 10.3390/rs13224609
|
[11] |
于飞, 吕争, 隋正伟, 等. 基于特征优选的多时相SAR数据水稻信息提取方法[J]. 农业机械学报, 2023, 54(3):259-265+327.
|
[12] |
Zhang L, Zhang L, Du B. Deep learning for remote sensing data: A technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(2): 22-40. https://doi.org/10.1109/MGRS.2016.2540798.
doi: 10.1109/MGRS.2016.2540798
|
[13] |
闫利, 徐青, 刘异. 基于注意力网络的遥感影像植被提取方法[J]. 测绘地理信息, 2021, 46(S1):44-48.
|
[14] |
Alami M M, Mansouri L E, Imani Y, et al. Crop mapping using supervised machine learning and deep learning: a systematic literature review[J]. International Journal of Remote Sensing, 2023, 44(8): 2717-2753. https://doi.org/10.1080/01431161.2023.2205984.
doi: 10.1080/01431161.2023.2205984
|
[15] |
黄晓涵, 黄文龙. 基于深度学习的多时序遥感影像水稻提取研究[J]. 地理空间信息, 2023, 21(8):61-64+113.
|
[16] |
Fu T, Tian S, Ge J. R-Unet: A Deep Learning Model for Rice Extraction in Rio Grande do Sul, Brazil[J]. Remote Sensing, 2023, 15(16): 4021. https://doi.org/10.3390/rs15164021.
doi: 10.3390/rs15164021
|
[17] |
蔡耀通, 刘书彤, 林辉, 等. 基于多源遥感数据的CNN水稻提取研究[J]. 国土资源遥感, 2020, 32(4):97-104.
|
[18] |
Li X, Zhang G, Cui H, et al. MCANet: A joint semantic segmentation framework of optical and SAR images for land use classification[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 106: 102638. https://doi.org/10.1016/j.jag.2021.102638.
doi: 10.1016/j.jag.2021.102638
|
[19] |
Wu D, Zhao J, Wang Z. AM-PSPNet: Pyramid Scene Parsing Network Based on Attentional Mechanism for Image Semantic Segmentation[C]// ICPCSEE Steering Committee.Abstracts of the 8th International Conference of Pioneering Computer Scientists,Engineers and Educators(ICPCSEE 2022) Part I. Department of Electronic Engineering,Heilongjiang University; 2022:1. https://doi.org/10.26914/c.cnkihy.2022.077315.
|
[20] |
Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation.[J]. Corr, 2019, abs/1902.09212. https://doi.org/10.48550/arXiv.1902.09212.
|
[21] |
Dominic Masters, Carlo Luschi. Revisiting small batch training for deep neural networks[Z]. ARXIV, 2018, 1804.07612.
|
[22] |
伍光和, 王乃昂, 胡双熙, 等. 自然地理学(第四版)[M]. 北京: 高等教育出版社, 2008.
|
[23] |
Olofsson P, Foody G M, Herold M, et al. Good practices for estimating area and assessing accuracy of land change[J]. Remote Sensing of ENVIRONMENT, 2014, 148: 42-57. https://doi.org/10.1016/j.rse.2014.02.015.
doi: 10.1016/j.rse.2014.02.015
|