农业大数据学报 ›› 2024, Vol. 6 ›› Issue (1): 56-67.doi: 10.19788/j.issn.2096-6369.000010

• 数据处理与应用 • 上一篇    下一篇

多源数据融合的泛时空特征水稻深度学习提取

杜家宽(), 李雁飞, 孙嗣文*(), 刘继东, 江腾达   

  1. 中科星图数字地球合肥有限公司,合肥 230088
  • 收稿日期:2023-11-08 接受日期:2024-01-31 出版日期:2024-03-26 发布日期:2024-04-08
  • 通讯作者: 孙嗣文,E-mail:18771049959@163.com
  • 作者简介:杜家宽,E-mail:dujiakuan1996@163.com
  • 基金资助:
    农业遥感大数据并行处理技术研究应用(201400210300)

Pan-spatiotemporal Feature Rice Deep Learning Extraction Based on Multi-source Data Fusion

DU JiaKuan(), LI YanFei, SUN SiWen*(), LIU JiDong, JIANG TengDa   

  1. GEOVIS Earth Technology Co.,Ltd,Hefei 230088, China
  • Received:2023-11-08 Accepted:2024-01-31 Online:2024-03-26 Published:2024-04-08

摘要:

传统基于时序遥感影像的水稻物候期特征提取方法要求有较高的时间分辨率,受成像条件制约而较难满足;由于不同水稻种植区域环境条件不同,基于单一影像的深度学习水稻种植区域提取方法泛化能力较差。本文选取时相相近的光学和合成孔径雷达(Synthetic Aperture Radar,SAR)数据,削弱水稻种植区影像时空信息差异。通过泛时空特征融合有效地利用光学数据空间特征信息和SAR数据后向散射信息,采用双结构网络模型提取水稻特征。实验表明,基于多源数据融合的泛时空特征水稻深度学习提取方法在三江平原和肥西县水稻数据集上训练模型验证集总体测试精度为95.66%,Kappa系数为0.8805。该模型在南昌市区域水稻提取结果与实际地块边界符合较好,总体提取精度为86.78%,证明了泛时空特征模型的泛化能力和实用性。

关键词: 泛时空特征, SAR数据, 光学数据, 特征融合, 深度学习, 水稻提取

Abstract:

Traditional methods of rice phenological phase feature extraction based on time-series remote sensing images require high temporal resolution, which is difficult to meet due to imaging conditions. Due to the different environmental conditions in different rice growing regions, the rice planting area extraction method based on single image has poor generalization ability. In this paper, similar optical and Synthetic Aperture Radar (SAR) data were selected to reduce the spatiotemporal information differences in rice planting area images. The spatial feature information of optical data and backscatter information of SAR data were effectively used to extract rice features by using a two-structure network model through pan-spatio-temporal feature fusion. Experiments show that the overall test accuracy of the training model validation set on the rice datasets of Sanjiang Plain and Feixi County is 95.66%, and the Kappa coefficient is 0.8805. The results of rice extraction in Nanchang City were in good agreement with the actual field boundaries, and the overall extraction accuracy was 86.78%, which proved the generalization ability and practicability of the pan-temporal feature model.

Key words: pan-temporal characteristics, SAR data, optical data, feature fusion, deep learning, rice extraction