农业大数据学报 ›› 2019, Vol. 1 ›› Issue (2): 5-14.doi: 10.19788/j.issn.2096-6369.190201
赵春江1,2,3
收稿日期:
2019-05-05
出版日期:
2019-06-26
发布日期:
2019-08-21
作者简介:
赵春江,男,研究员、中国工程院院士,研究方向:农业信息技术与智能装备;E-mail: zhaocj@nercita.org.cn
基金资助:
Chunjiang Zhao1,2,3
Received:
2019-05-05
Online:
2019-06-26
Published:
2019-08-21
摘要:
植物表型组学通过集成自动化平台装备和信息化技术手段,获取多尺度、多生境、多源异构植物表型海量数据,形成植物表型组学大数据,从组学高度系统深入地挖掘“基因型-表型-环境型”内在关系、全面揭示特定生物性状的形成机制,将极大地促进功能基因组学、作物分子育种与高效栽培的进程。本文概括了植物表型组学大数据的发展背景、含义、产生过程和特点,系统综述了植物表型组学大数据研究进展,包括植物表型数据获取与解析、植物表型组大数据管理及建库技术、表型性状预测和基于表型组的多重组学分析的进展;从植物表型数据采集标准、多样化表型配套设施和低成本表型设备研发、开放共享植物表型组大数据平台构建、表型大数据融合与挖掘理论方法、植物表型组学协同共享和互作机制五个方面探讨了当前植物表型组学大数据研究与应用中面临的问题和挑战;最后从加强植物表型组技术体系设计与标准研究、植物表型-环境感知机理研究和智能化设备研发、植物表型组大数据建设以及人才队伍和协作网络建设四个方面提出具体建议。
中图分类号:
赵春江. 植物表型组学大数据及其研究进展[J]. 农业大数据学报, 2019, 1(2): 5-14.
Chunjiang Zhao. Big Data of Plant Phenomics and Its Research Progress[J]. Journal of Agricultural Big Data, 2019, 1(2): 5-14.
表1
多尺度植物表型数据获取与解析案例"
不同尺度分类 | 数据类型 | 表型解析方法 | 表型参数 | 植物类别 |
---|---|---|---|---|
激光共聚焦显微图像 | 随机森林 | 下胚轴细胞表型 | 拟南芥[ | |
细胞、组织尺度 | Micro-CT图像 | 随机森林 | 茎秆维管束表型 | 玉米[ |
人工神经网络(ANN) | 幼苗病害识别 | 蝴蝶兰[ | ||
随 机森林 | 生物量、叶面积指数、叶长等表型 | 拟南芥[ | ||
根系、叶片、果穗等识别与分类 | 小麦[ | |||
RGB图像 | 卷积神经网络(CNN) | 豆荚中的种子数目 | 大豆[ | |
果实成熟度 | 苹果[ | |||
叶片识别(叶型胁迫的类型)、分类(低、 | 大豆[ | |||
深度卷积神经网络(DCNN) | ||||
器官尺度 | 中或高胁迫)及量化(胁迫严重度) | |||
RGB+深度图像 | 支持向量机(SVM) | 叶片病毒侵染识别 | 西红柿[ | |
荧光成像 | 支持向量机(SVM) | 叶片黄龙病检测 | 柑橘[ | |
支持向量机(SVM) | 病害早期检测 | 大麦、西红柿、甜菜[ | ||
高光谱成像 | K-均值聚类 | 叶片黄褐斑病检测 | 大麦[ | |
光谱、红外、叶绿素 | 随 机森林 | 小麦黑斑病检测 | 小麦[ | |
荧光成像 | ||||
RGB+光谱图像 | 支持向量机(SVM) | 植株动态生长表型 | 大麦[ | |
植株尺度 | 点云数据 | Faster R-CNN | 植株分割、株高检测 | 玉米[ |
简单线性迭代聚类(SLIC) | 大田水稻稻穗识别 | 水稻[ | ||
RGB 图像 | +卷积神经网络(CNN) | |||
卷积神经网络(CNN) | 开花表型性状 | 小麦[ | ||
RGB+高程图 | 卷积神经网络(CNN) | 出苗率、生物量 | 小麦[ | |
群体尺度 | 立体相机成像 | 深度卷积神经网络(DCNN) | 茎秆数目、茎宽表型 | 高粱、甘蔗、谷物、玉米[ |
冠层覆盖度、植被指数、开花表型检测 | 棉花[ | |||
多光谱成像 | 支持向量机(SVM) | 黄龙病检测 | 柑橘[ | |
点云数据 | 人工神经网络(ANN) | 绿叶面积指数(GAI)解析 | 小麦[ | |
浅层卷积神经网络(CNN) | 产量性状 | 莴苣[ |
表2
主要植物表型组数据库及管理系统"
名称 | 简介 | 发表时间 | URL |
---|---|---|---|
CropSight[ | 针对物联网传感器和表型平台自动化获取数 据的开源信息管理系统 | 2019 | https://github.com/Crop-Phenomics-Group/cropsigt/releases |
PHIS[ | 本体驱动的表型混合信息系统一一处理植物 表型组学中多源、多尺度信息 | 2019 | http://www.phis.inra.fr/ |
Planteome[ | 植物基因组和表型组数据共享平台 | 2018 | http://www.planteome.org |
Crop Phenotyping Center[ | 华中农业大学作物表型中心 | 2017 | http://plantphenomics.hzau.edu.cn/checkiflogin_en.action |
PGP repository[ | 植物表型和基因组学数据发布基础平台 | 2016 | http://edal.ipk-gatersleben.de/repos/pgp/ |
Seed breeding cloud platform | 金种子育种云平台 | 2016 | http://ebreed.ccm.cn/#bz |
Phenotyper[ | 使用移动终端收集表型数据的软件 | 2015 | http://www.bioinformatics.org/groups/7group_id=1210 |
SensorDB[ | 用于集成、可视化和分析各种生物传感器数 据的虚拟实验室 | 2015 | http://sensordb.csiro.au. |
OPTIMAS-DW[ | 玉米的转录组学、代谢组学、离子组学、蛋 白质组学和表型组学综合数据资源库 | 2012 | https://apex.ipk-gatersleben.de/apex/f?p=270 :1:::::: |
iPlant (又称 CyVerse)[ | 植物研究数据管理系统 | 2011 | http://www.cyverse.org |
BIOGEN BASE- CASSAVA[ | 木薯表型组和基因组信息资源库 | 2011 | http://www.tnaugenomics.con/biogenbase/casava.php |
BreeDB | 收录育种所需数量农艺性状 | 2009 | https://www.wur.nl/en/show/BreeDRhtm |
[1] | 李国杰 . 大数据研究的科学价值[J]. 中国计算机学会通讯, 2012,8(9):8-15. |
Li G J . The scientific value of big data research[J]. Communications of the China Computer Federation, 2012,8(9):8-15. | |
[2] | 邱晨辉 . 院士专家热议“人工智能计算”——人工智能时代,谁将成为“第一生产力”[N]. 中国青年报, 2018. |
Qiu C H . Academician experts hotly discuss "artificial intelligence computing" - who will become the "first productivity" in the era of artificial intelligence[N]. China Youth Daily, 2018. | |
[3] | 中国人工智能学会. 中国人工智能系列白皮书--智能农业 [R]. 2016. 9. |
Chinese Association for Artificial Intelligence. White paper on artificial intelligence in China--Intelligent Agriculture[R]. 2016. 9. | |
[4] | Wallace JG , Rodgers-Melnick E and Buckler ES. On the Road to Breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics[J]. Annual Review of Genetics, 2018,52:421-444. |
[5] | Marx V . The big challenges of big data[J]. Nature, 2013,498:255-260. |
[6] | illumina. HiSeq X TM series of sequencing systems[A] . Specification Sheet: Sequencing, 2016. |
[7] | Furbank RT and Tester M . Phenomics--technologies to relieve the phenotyping bottleneck[J]. Trends in Plant Science, 2011,16(12):635-644. |
[8] | Zhao C, Zhang Y, Du J , et al. Crop phenomics: current status and perspectives[J]. Frontiers in Plant Science, 2019,10:714. |
[9] | Tardieu F, Cabrera-Bosquet L, Pridmore T , et al. Plant phenomics, from sensors to knowledge[J]. Current Biology, 2017,27(15):R770-R783. |
[10] | Hickey LT, A NH, Robinson H , et al. Breeding crops to feed 10 billion[J]. Nature Biotechnology, 2019,37(7):744-754. |
[11] | McCouch S, Baute GJ, Bradeen J , et al. Agriculture: feeding the future[J]. Nature, 2013,499(7456):23-24. |
[12] |
潘映红 . 论植物表型组和植物表型组学的概念与范畴[J]. 作物学报, 2015,41(2):175-186.
doi: 10.3724/SP.J.1006.2015.00175 |
Pan Y H . Analysis of concepts and categories of plant phenome and phenomics[J]. Acta Agronomica Sinica, 2015,41(2):175-186.
doi: 10.3724/SP.J.1006.2015.00175 |
|
[13] | 周济, Tardieu F, Pridmore T , 等. 植物表型组学:发展、现状与挑战[J]. 南京农业大学学报, 2018,41(4):580-588. |
Zhou J, Tardieu F, Pridmore T , et al. Plant phenomics: history, present status and challenges[J]. Journal of Nanjing Agricultural University, 2018,41(4):580-588. | |
[14] | Pieruschka R and Schurr U . Plant phenotyping: past, present, and future[J]. Plant Phenomics, 2019: 1-6. |
[15] | Virlet N, Sabermanesh K, Sadeghi-Tehran P , et al. Field Scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring[J]. Functional Plant Biology, 2017,44(1):143. |
[16] | 宁康, 陈挺 . 生物医学大数据的现状与展望[J]. 科学通报, 2015,60(5-6):534-546. |
Ning K, Chen T . Big data for biomedical research: current status and prospective[J]. Chinese Science Bulletin, 2015,60(5-6):534-546. | |
[17] | Shao M, Zhang Y, Du J , et al. Fast analysis of maize kernel plumpness characteristics through Micro-CT technology [C]. International Conference on Computer and Computing Technologies in Agriculture, 2019: 31-39. |
[18] | Hawkesford MJ and Lorence A . Plant phenotyping: increasing throughput and precision at multiple scales[J]. Functional Plant Biology, 2017, 44(1): v-vii. |
[19] | Cwiek-Kupczynska H, Altmann T, Arend D , et al. Measures for interoperability of phenotypic data: minimum information requirements and formatting[J]. Plant Methods, 2016,12:44. |
[20] | Araus JL and Cairns JE . Field high-throughput phenotyping: the new crop breeding frontier[J]. Trends in Plant Science, 2014,19(1):52-61. |
[21] | Chenu K, Deihimfard R and Chapman SC . Large-scale characterization of drought pattern: a continent-wide modelling approach applied to the Australian wheatbelt--spatial and temporal trends[J]. New Phytologist, 2013,198(3):801-820. |
[22] | Reuzeau C, Frankard V, Hatzfeld Y , et al. Traitmill?: a functional genomics platform for the phenotypic analysis of cereals[J]. Plant Genetic Resources, 2006,4(1):20-24. |
[23] | Li L, Zhang Q and Huang D . A review of imaging techniques for plant phenotyping[J]. Sensors (Basel), 2014,14(11):20078-20111. |
[24] | Hall HC, Fakhrzadeh A, Luengo Hendriks CL , et al. Precision automation of cell type classification and sub-cellular fluorescence quantification from laser scanning confocal images[J]. Frontiers in Plant Science, 2016,7:119. |
[25] | Du J, Zhang Y, Guo X , et al. Micron-scale phenotyping quantification and three-dimensional microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning[J]. Functional Plant Biology, 2017,44(1):10. |
[26] | Huang K-Y . Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features[J]. Computers and Electronics in Agriculture, 2007,57(1):3-11. |
[27] | Lee U, Chang S, Putra GA , et al. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis[J]. PLoS One, 2018,13(4):e0196615. |
[28] | Pound MP, Atkinson JA, Townsend AJ , et al. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping[J]. Gigascience, 2017,6(10):1-10. |
[29] | Uzal LC, Grinblat GL, Namías R , et al. Seed-per-pod estimation for plant breeding using deep learning[J]. Computers and Electronics in Agriculture, 2018,150:196-204. |
[30] | Sabzi S, Abbaspour-Gilandeh Y, García-Mateos G , et al. An automatic non-destructive method for the classification of the ripeness stage of red delicious apples in orchards using aerial video[J]. Agronomy, 2019,9(2):84. |
[31] | Ghosal S, Blystone D, Singh AK , et al. An explainable deep machine vision framework for plant stress phenotyping[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(18):4613-4618. |
[32] | Mokhtar U, Ali MAS, Hassanien AE , et al. Identifying two of tomatoes leaf viruses using support vector machine[M]. New Delhi: Springer, 2015: 771-782. |
[33] | Raza SE, Prince G, Clarkson JP , et al. Automatic detection of diseased tomato plants using thermal and stereo visible light images[J]. PLoS One, 2015,10(4):e0123262. |
[34] | Wetterich CB, Kumar R, Sankaran S , et al. A comparative study on application of computer vision and fluorescence imaging spectroscopy for detection of citrus huanglongbing disease in USA and Brazil[J]. Frontiers in Optics, 2013: 841738. |
[35] | Rumpf T, Mahlein AK, Steiner U , et al. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance[J]. Computers and Electronics in Agriculture, 2010,74(1):91-99. |
[36] | Wahabzada M, Mahlein AK, Bauckhage C , et al. Metro maps of plant disease dynamics--automated mining of differences using hyperspectral images[J]. PLoS One, 2015,10(1):e0116902. |
[37] | Odilbekov F, Armoniene R, Henriksson T , et al. Proximal phenotyping and machine learning methods to identify septoria tritici blotch disease symptoms in wheat[J]. Frontiers in Plant Science, 2018,9:685. |
[38] | Chen D, Neumann K, Friedel S , et al. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis[J]. Plant Cell, 2014,26(12):4636-4655. |
[39] | Jin S, Su Y, Gao S , et al. Deep Learning: individual maize segmentation from terrestrial lidar data using faster R-CNN and regional growth algorithms[J]. Frontiers in Plant Science, 2018,9:866. |
[40] | Xiong X, Duan L, Liu L , et al. Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization[J]. Plant Methods, 2017,13:104. |
[41] | Wang X, Xuan H, Evers B , et al. High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat[J]. bioRxiv, 2019. |
[42] | Shubhra Aich, Anique Josuttes, Ilya Ovsyannikov , et al. DeepWheat: estimating phenotypic traits from crop images with deep learning[J]. IEEE Winter Conference on Applications of Computer Vision, 2018: 323-332. |
[43] | Harjatin Baweja, Tanvir Parhar, Omeed Mirbod , et al. StalkNet: a deep learning pipeline for high-throughput measurement of plant stalk count and stalk width. Field and Service Robotics. Cham: Springer, 2018. |
[44] | Xu R, Li C and Paterson AH . Multispectral imaging and unmanned aerial systems for cotton plant phenotyping[J]. PLoS One, 2019,14(2):e0205083. |
[45] | Garcia-Ruiz F, Sankaran S, Maja JM , et al. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees[J]. Computers and Electronics in Agriculture, 2013,91:106-115. |
[46] | Liu S, Baret F, Abichou M , et al. Estimating wheat green area index from ground-based LiDAR measurement using a 3D canopy structure model[J]. Agricultural and Forest Meteorology, 2017,247:12-20. |
[47] | Bauer A, Bostrom AG, Ball J , et al. Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production[J]. Horticulture Research, 2019,6:70. |
[48] | Redmon J, Divvala S, Girshick R , et al. You Only Look Once: unified, real-Time object detection[J]. Computer Science, 2015. |
[49] | Sabour S, Frosst N and Hinton GE . Dynamic routing between capsules[J]. Computer Science, 2017. |
[50] | Colmsee C, Mascher M, Czauderna T , et al. OPTIMAS-DW: a comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize[J]. BMC Plant Biology, 2012,12:245. |
[51] | Reynolds D, Ball J, Bauer A , et al. CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management[J]. GigaScience, 2019,8(3). |
[52] | Salehi A, Jimenez-Berni J, Deery DM , et al. SensorDB: a virtual laboratory for the integration, visualization and analysis of varied biological sensor data[J]. Plant Methods, 2015,11:53. |
[53] | Cooper L, Meier A, Laporte MA , et al. The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics[J]. Nucleic Acids Research, 2018,46(D1):D1168-D1180. |
[54] | Neveu P, Tireau A, Hilgert N , et al. Dealing with multi-source and multi-scale information in plant phenomics: the ontology-driven Phenotyping Hybrid Information System[J]. New Phytologist, 2019,221(1):588-601. |
[55] | Zhang X, Huang C, Wu D , et al. High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth[J]. Plant Physiology, 2017,173(3):1554-1564. |
[56] | Arend D, Junker A, Scholz U , et al. PGP repository: a plant phenomics and genomics data publication infrastructure[J]. Database(Oxford), 2016. |
[57] | Kohl K and Gremmels J . A software tool for the input and management of phenotypic data using personal digital assistants and other mobile devices[J]. Plant Methods, 2015,11:25. |
[58] | Goff SA, Vaughn M, McKay S , et al. The iPlant collaborative: cyberinfrastructure for plant biology[J]. Frontiers in Plant Science, 2011,2:34. |
[59] | Jayakodi M, Selvan SG, Natesan S , et al. A web accessible resource for investigating cassava phenomics and genomics information: BIOGEN BASE[J]. Bioinformation, 2011,6(10):391-392. |
[60] | Krajewski P, Chen D, Cwiek H , et al. Towards recommendations for metadata and data handling in plant phenotyping[J]. Journal of Experimental Botany, 2015,66(18):5417-5427. |
[61] | Oellrich A, Walls RL, Cannon EK , et al. An ontology approach to comparative phenomics in plants[J]. Plant Methods, 2015,11:10. |
[62] | Lobell DB, Schlenker W and Costa-Roberts J . Climate trends and global crop production since 1980[J]. Science, 2011,333(6042):616-620. |
[63] | Lobell DB and Burke MB . On the use of statistical models to predict crop yield responses to climate change[J]. Agricultural and Forest Meteorology, 2010,150(11):1443-1452. |
[64] | Johnson MD, Hsieh WW, Cannon AJ , et al. Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods[J]. Agricultural and Forest Meteorology, 2016, 218- 219:74-84. |
[65] | Webb S . Deep learning for biology[J]. Nature, 2018,554(7693):555-557. |
[66] | You J, Li X, Low M , et al. Deep gaussian process for crop yield prediction based on remote sensing data[M], 2017. |
[67] | Gro Intelligence . How to make money with Gro intelligence yield models[EB/OL]. https://www.gro-intelligence.com/about/blog/how-to-make-money -with-gro-intelligence-yield-models. |
[68] | Huang X, Wei X, Sang T , et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 2010,42(11):961-967. |
[69] | Busemeyer L, Mentrup D, Moller K , et al. BreedVision-a multi-sensor platform for non-destructive field-based phenotyping in plant breeding[J]. Sensors (Basel), 2013,13(3):2830-2847. |
[70] | Yang W, Guo Z, Huang C , et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice[J]. Nature Communications, 2014,5:5087. |
[71] | Yang W, Guo Z, Huang C , et al. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer[J]. Journal of Experimental Botany, 2015,66(18):5605-5615. |
[72] | Donald CM . The breeding of crop ideotypes[J]. Euphytica, 1968,17:385-403. |
[73] | Junker A, Muraya MM, Weigelt-Fischer K , et al. Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems[J]. Frontiers in Plant Science, 2014,5:770. |
[1] | 徐佳, 康桂玲, 于林松, 赵玉岩, 刘敬兵. 面向土地质量评价的省级农业地质大数据平台构建[J]. 农业大数据学报, 2023, 5(1): 116-125. |
[2] | 管博伦, 董伟, 张立平, 杨前进, 汪焱. 再生稻溯源追踪平台研发[J]. 农业大数据学报, 2023, 5(1): 55-67. |
[3] | 王鑫, 郭雷风. 防返贫监测大数据融合框架的构建与应用[J]. 农业大数据学报, 2022, 4(2): 108-118. |
[4] | 李博, 马文君, 王忠明, 王姣姣. 林草科研大数据平台的研建与应用[J]. 农业大数据学报, 2022, 4(2): 69-77. |
[5] | 孙雨潇, 李艳丽, 李峰, 陈谦. 国内外科学数据共享现状研究与发展建议[J]. 农业大数据学报, 2022, 4(2): 88-98. |
[6] | 陶耘, 成谢锋. 区域大数据发展与区域农业大数据建设水平比较研究[J]. 农业大数据学报, 2022, 4(1): 125-135. |
[7] | 张茜, 田乙慧, 肖文, 鲁燕. 大数据在农产品冷链物流中的应用[J]. 农业大数据学报, 2022, 4(1): 55-61. |
[8] | 凌诺娟, 饶元. 云农场智慧服务大数据平台设计与实现[J]. 农业大数据学报, 2021, 3(4): 10-19. |
[9] | 李志鹏, 赵健, 王苗苗, 陈宏, 高晓丹. 基于大数据的福建省科技特派员服务云平台构建与实现[J]. 农业大数据学报, 2021, 3(4): 59-69. |
[10] | 袁培森, 薛铭家, 熊迎军, 翟肇裕, 徐焕良. 基于无人机高通量植物表型大数据分析及应用研究综述[J]. 农业大数据学报, 2021, 3(3): 62-75. |
[11] | 汪汇涓, 徐倩, 周爱莲, 梁晓贺, 谢能付, 李小雨, 吴赛赛. 区块链的发展历程及在农业领域的应用展望[J]. 农业大数据学报, 2021, 3(3): 76-86. |
[12] | 薛沐涵, 徐硕, 鲁峰, 朱勇, 吴建光, 王义刚. 渔船渔港综合管理服务平台构建与应用[J]. 农业大数据学报, 2021, 3(3): 45-54. |
[13] | 李怡德, 鲁峰, 朱勇, 徐硕, 孙璐. 基于梯度提升迭代决策树模型的渔船转移数据挖掘[J]. 农业大数据学报, 2021, 3(3): 55-61. |
[14] | 张明旭, 张茹, 席琳图雅, 陈元, 毕雅琼, 张春红, 吴涛涛, 李旻辉. 内蒙古地区中药资源大数据的应用与展望[J]. 农业大数据学报, 2021, 3(2): 42-53. |
[15] | 李强, 高懋芳, 方莹. 农业大数据信息平台构建方法初探[J]. 农业大数据学报, 2021, 3(2): 24-30. |
|