农业大数据学报 ›› 2019, Vol. 1 ›› Issue (2): 5-14.doi: 10.19788/j.issn.2096-6369.190201

• 专题-植物表型组学 • 上一篇    下一篇

植物表型组学大数据及其研究进展

赵春江1,2,3   

  1. 1.北京农业信息技术研究中心,北京 100097
    2.国家农业信息化工程技术研究中心,北京 100097
    3.数字植物北京市重点实验室,北京 100097
  • 收稿日期:2019-05-05 出版日期:2019-06-26 发布日期:2019-08-21
  • 作者简介:赵春江,男,研究员、中国工程院院士,研究方向:农业信息技术与智能装备;E-mail: zhaocj@nercita.org.cn
  • 基金资助:
    北京市农林科学院协同创新中心建设专项(作物表型组学协同创新中心)

Big Data of Plant Phenomics and Its Research Progress

Chunjiang Zhao1,2,3   

  1. 1.Beijing Research Center for Information Technology in Agriculture, Beijing 100097
    2.National Engineering Research Center for Information Technology in Agriculture, Beijing 100097
    3.Beijing Key Laboratory of Digital Plant, Beijing 100097
  • Received:2019-05-05 Online:2019-06-26 Published:2019-08-21

摘要:

植物表型组学通过集成自动化平台装备和信息化技术手段,获取多尺度、多生境、多源异构植物表型海量数据,形成植物表型组学大数据,从组学高度系统深入地挖掘“基因型-表型-环境型”内在关系、全面揭示特定生物性状的形成机制,将极大地促进功能基因组学、作物分子育种与高效栽培的进程。本文概括了植物表型组学大数据的发展背景、含义、产生过程和特点,系统综述了植物表型组学大数据研究进展,包括植物表型数据获取与解析、植物表型组大数据管理及建库技术、表型性状预测和基于表型组的多重组学分析的进展;从植物表型数据采集标准、多样化表型配套设施和低成本表型设备研发、开放共享植物表型组大数据平台构建、表型大数据融合与挖掘理论方法、植物表型组学协同共享和互作机制五个方面探讨了当前植物表型组学大数据研究与应用中面临的问题和挑战;最后从加强植物表型组技术体系设计与标准研究、植物表型-环境感知机理研究和智能化设备研发、植物表型组大数据建设以及人才队伍和协作网络建设四个方面提出具体建议。

关键词: 植物表型组学, 大数据, 数字植物, 数据挖掘, 数据管理, 数据获取, 性状预测, 植物表型组大数据平台

Abstract:

Plant phenomics is capable of acquiring gigantic multi-dimensional, multi-environment, and multi-source heterogeneous plant phenotyping datasets through integrated automation platforms and information retrieval technologies, based on which the big-data driven plant phenomics research is established. This emerging research domain aims to systematically and thoroughly explore the internal relationship between "gene-phenotype-environment" at the omics level, so that phenomics methods can be utilized to unravel the formation mechanism of specific biological traits in a comprehensive manner. As a result, it is greatly catalyzing the research progress of functional genomics, crop molecular breeding, and efficient cultivation. In this paper, we summarized the background, definition, initiation, and features of the big-data driven plant phenomics, followed by a systemic overview of the progress of this field, including the acquisition and analysis of plant phenotyping data, data management and relevant database construction techniques for administering big data generated, the prediction of phenotypic traits, and its connection with the plant omics research. Furthermore, this paper focuses on discussing present problems and challenges encountered by both plant research and related applications, including (1) the standardization of collecting plant phenotypes, (2) research and development (R&D) of diverse phenotyping devices, supporting facilities, and low-cost phenotyping equipment, (3) the establishment of big data platforms that can openly share phenotyping data and phenotypic traits information, (4) theoretical approaches for fusion algorithms and data mining techniques, and (5) collaborative, sharing and interactive mechanisms for the plant phenomics community to adopt. Finally, the paper puts forward suggestions in four aspects that need to be strengthened: (1) systematic design and standards of plant phenomics research, (2) revealing the mechanism of plant phenotype and environtype to facilitate intelligent equipment R&D, (3) the establishment of big data for plant phenomics, and (4) the formation of collaborations through academic networks and specialized research groups and laboratories.

Key words: plant phenomics, big data, digital plant, data mining, data management, data acquisition, trait prediction, big data platform of plant phenomics

中图分类号: 

  • S-1