农业大数据学报 ›› 2020, Vol. 2 ›› Issue (1): 70-78.doi: 10.19788/j.issn.2096-6369.200109

• 专刊——区域性农业大数据发展 • 上一篇    下一篇

新疆生产建设兵团棉花生产大数据平台建设与探索

吕新1,2,3(), 梁斌4,5, 张立福6, 马富裕1,2,3, 王海江1,2,3, 刘阳春7, 高攀1,8, 张泽1,2,3, 侯彤瑜1,2,3   

  1. 1. 新疆兵团农业大数据国家地方联合工程研究中心,石河子 832000
    2. 石河子大学农学院,石河子 832000
    3. 新疆兵团绿洲生态农业重点实验室,石河子 832000
    4. 南京森林警察学院,南京 210023
    5. 新疆兵团农业农村局,乌鲁木齐 830002
    6. 中国科学院空天信息创新研究院遥感地球所,北京 100101
    7. 中国农业机械化科学研究院,北京 100083
    8. 石河子大学信息科学与技术学院,石河子 832000
  • 收稿日期:2019-09-01 出版日期:2020-03-26 发布日期:2020-06-02
  • 通讯作者: 吕新 E-mail:lxshz@126.com
  • 作者简介:吕新,男,博士研究生,研究方向:农业信息化;E-mail: lxshz@126.com
  • 基金资助:
    新疆兵团科技计划重大项目(2018AA004)

Construction of an Agricultural Big Data Platform for XPCC Cotton Production

Xin Lv1,2,3(), Bin Liang4,5, Lifu Zhang6, Fuyu Ma1,2,3, Haijiang Wang1,2,3, Yangchun Liu7, Pan Gao1,8, Zhangze1,2,3, HouTongyu1,2,3   

  1. 1. National-Local Joint Engineering Research Center for XPCC’s Agricultural Big Data, Shihezi 832000, China
    2. Agriculture College of Shihezi University, Shihezi 832000, China
    3. The Key Laboratory of Oasis Eco-Agriculture of Xinjiang Production and Construction Corps, Shihezi 832000, China
    4. Nanjing Forest Police College, Nanjing 210023, China
    5. Administration of Agriculture and Rural Affairs of Xinjiang Production and Construction Corps, Urumchi 830002, China
    6. Aerospace Information Research Institute, Chinese Academy of Science, Beijing 100101, China
    7. Chinese Academy of Agricultural Mechanization Sciences, Beijing 100083, China
    8. College of Information Science and Technology, Shihezi University, Shihezi 832000, China
  • Received:2019-09-01 Online:2020-03-26 Published:2020-06-02
  • Contact: Xin Lv E-mail:lxshz@126.com

摘要:

大数据技术已经成为农业向智能化发展的重要推动力。新疆生产建设兵团在农业集约化程度、规模化水平、农机装备发展、现代农业技术应用等方面一直处于全国领先水平,形成了具有地域特色的现代植棉体系。面对兵团棉花生产领域多年来积累的海量数据,如何应用大数据技术进一步提升棉花生产的智能化水平,实现棉花全产业链的健康高效可持续发展,是信息化时代加强和提升兵团屯垦戍边能力的关键问题。为了促进兵团棉花生产农业大数据产、学、研一体发展,针对兵团特有的现代化植棉体系,从农业资源、农情监测、生产管理、农机调度、市场预测五个维度出发,基于成熟的大数据存储和分析系统框架,构建了从下到上由数据层、模型层、系统层和应用层组成的我国首个覆盖棉花生产全产业链的单品大数据平台。建成后该平台拟向全疆参与棉花生产和管理的潜在用户提供棉花生产农业大数据综合管理和共享、棉花生产遥感监测、棉花生产农机作业监控与运维、棉花生产种业生产管理、棉花生产水、肥、药智能决策、棉花产品质量追溯及棉花市场预警预测服务。最后,本文针对平台研发和构建过程中在数据共享、模型升级和服务模式方面遇到的问题进行了分析,并提出了建议,以期为我国农业大数据资源共享和平台建设提供参考。

关键词: 棉花, 大数据, 农业信息化, 智能农业, 新疆, 农业大数据, 产业链, 数据平台

Abstract:

The Xinjiang Production and Construction Corps (XPCC) have created a modern cotton planting system with regional characteristics in China. This new system advances Chinese production techniques in the aspects of agricultural intensification, scale, development of agricultural machinery, and application of modern agricultural technology. During the years of systematic development and performance, massive data were accumulated by XPCC in the cotton planting field. As big data technology has become an important driving force for the development of intelligent agriculture in China, how to apply this technology to further improve the intelligent level of the cotton planting system and realize the healthy, efficient, and sustainable development of the whole cotton industry chain is a key problem in strengthening and enhancing XPCC’s ability to reclaim and defend the Chinese border in the information age. Thus, we constructed a big data platform that covers the entire industrial chain for cotton production in China based on a mature commercial big data storage and analysis system framework to promote the cooperation of industry, colleges, and institutes for cotton production big data in the XPCC. This platform was comprised of data, model, system, and application layers from the bottom up. In each layer, the cotton production chain was analyzed using five dimensions of agricultural resources, agricultural monitoring, production management, agricultural machinery scheduling, and market prediction. After completion, the developed platform intends to provide big data for comprehensive management and sharing, remote-sensing monitoring, agricultural machinery operation monitoring and maintenance, intelligent decision-making, quality traceability, and market early warning and prediction services for cotton production to potential users involved in cotton production and management. Finally, this paper analyzes the problems encountered in data sharing, model upgrades, and service modes in the process of platform research and development, and puts forward some suggestions to provide references for agricultural big data resource sharing and platform construction in China.

Key words: cotton, big data, informatization agriculture, intelligent agriculture, Xinjiang, agricultural big data, industry chain, data platform

中图分类号: 

  • G203