1 |
曹冰雪,李瑾,冯献,等.我国智慧农业的发展现状、路径与对策建议[J].农业现代化研究,2021,42(05):785-794.
|
|
Cao B X, Li j, Feng X, et al. Development status, path, and countermeasures of smart agriculture in China[J]. Research of Agricultural Modernization, 2021,42(05): 785-794.
|
2 |
杨艺,朱翠明,王霞.我国农业信息化建设存在的问题、成因与发展对策研究[J].情报科学,2019,37(05):53-57.
|
|
Yang Y, Zhu C M, Wang X. Research on the Problems, Causes and Development Strategies of Agricultural Informatization in China[J]. Information Science, 2019,37(05):53-57.
|
3 |
Qin H, Yao Y. Agriculture Knowledge Graph Construction and Application. Journal of Physics: Conference Series. IOP Publishing, 2021, 1756(1): 012010.
|
4 |
Yogish D, Manjunath T N, Hegadi R S. Survey on trends and methods of an intelligent answering system. 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT). IEEE, 2017: 346-353.
|
5 |
Jusoh, Shaidah, Hejab M, et al. Semantic extraction from texts. of International Conference on Computer Engineering and Applications IPCSIT, Singapore. 2011: 520-525.
|
6 |
Lu J, Wu D, Mao M, et al. Recommender system application developments: a survey[J]. Decision Support Systems, 2015, 74: 12-32.
|
7 |
Bollacker K, Evans C, Paritosh P, et al. Freebase: a collaboratively created graph database for structuring human knowledge. Proceedings of the 2008 ACM SIGMOD international conference on Management of data. 2008: 247-1250.
|
8 |
Fabian M, Gjergji K, Gerhard W. Yago: A core of semantic knowledge unifying wordnet and wikipedia.16th International world wide web conference, .
|
9 |
Michael K, Ivica L, Juhl J L, et al. The SIDER database of drugs and side effects[J]. Nucleic Acids Research, 2016,(D1): D1075-D1079.
|
10 |
Elizabeth, Blakesley, Lindsay. The Internet Movie Database (IMDb)[J]. Electronic Resources Review, 1997, 3(5):56-57.
|
11 |
Cheng L Q, Qing S, Peng Z Z, et al. Cn-MAKG: China meteorology and agriculture knowledge graph construction based on semi-structured data. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS). IEEE, 2018: 692-696.
|
12 |
Chen Y, Kuang J, Cheng D, et al. AgriKG: an agricultural knowledge graph and its applications. International conference on database systems for advanced applications. Springer, Cham, 2019: 533-537.
|
13 |
张海瑜,陈庆龙,张斯静,等.基于语义知识图谱的农业知识智能检索方法[J].农业机械学报,2021,52(S1):156-163.
|
|
Zhang H Y, Chen Q L, Zhang S J, et al. lntelligent Retrieval Method of Agricultural Knowledge Based on Semantic Knowledge Graph [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021,52(S1):156-163.
|
14 |
Xie R, Liu Z, Luan H, et al. "Image-embodied Knowledge Representation Learning." Proceedings of the Twenty-Sixth International Joint Conference on Artificial IntelligenceMain track, 2016: 3140-3146.
|
15 |
陈烨,周刚,卢记仓.多模态知识图谱构建与应用研究综述[J].计算机应用研究,2021,38(12):3535-3543.
|
|
Chen Y, Zhou G, Lu J C. Survey on construction and application research for multi-modal knowledge graphs[J]. Application Research of Computers, 2021,38(12):3535-3543.
|
16 |
Wang M, Wang H, Qi G, et al. Richpedia: a large-scale, comprehensive multi-modal knowledge graph[J]. Big Data Research, 2020, 22: 100159.
|
17 |
Liu Y, Li H, Garcia-Duran A, et al. MMKG: multi-modal knowledge graphs. European Semantic Web Conference. Springer, Cham, 2019: 459-474.
|
18 |
Wilcke W., Bloem P., Boer V.de, et al. End-to-end entity classification on multimodal knowledge graphs. arXiv preprint arXiv:, 2020.
|
19 |
Sun R, Cao X, Zhao Y, et al. Multi-modal knowledge graphs for recommender systems. Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020: 1405-1414.
|
20 |
Sergieh H M, Botschen T, Gurevych I, et al. A Multimodal Translation-Based Approach for Knowledge Graph Representation Learning. Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics. 2018: 225-234.
|
21 |
Pezeshkpour P, Chen L, Singh S. Embedding Multimodal Relational Data for Knowledge Base Completion[J].Association for Computing Machinery. 2018: 1405–1414.
|
22 |
刘建伟, 丁熙浩, 罗雄麟. 多模态深度学习综述[J]. 计算机应用研究, 2020,37(6): 1601-1614.
|
|
Liu J W, Ding X H, Luo X L. Survey of multimodal deep learning [J]. Application Research of Computers, 2020,37(6): 1601-1614.
|
23 |
孙影影,贾振堂,朱昊宇.多模态深度学习综述[J].计算机工程与应用,2020,56(21):1-10.
|
|
Sun Y Y, Jia Z T, Zhu H Y. Survey of Multimodal Deep Learning [J]. Computer Engineering and Applications, 2020,56(21):1-10.
|
24 |
Han X, Liu Z, Sun M. Joint Representation Learning of Text and Knowledge for Knowledge Graph Completion[J]. CoRR,2016, abs/1611.04125.
|
25 |
Yang M, Zhang L, Zhang D, et al. Relaxed collaborative representation for pattern classification. Conference on Computer Vision and Pattern Recognition. IEEE, 2012: 2224-2231.
|
26 |
Zaremba Wojciech, Sutskever Ilya, Vinyals Oriol. Recurrent Neural Network Regularization[J]. CoRR,2014, abs/1409.2329.
|
27 |
Shi X, Chen Z, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[J]. Advances in neural information processing systems, 2015: 802-810.
|
28 |
Devlin Jacob, Chang Ming-Wei, Lee Kenton, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 4171-4186.
|
29 |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017: 6000-6010.
|
30 |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012: 1106-1114.
|
31 |
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. International Conference on Learning Representations, 2015: 1-14.
|
32 |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
|
33 |
Logan B. Mel frequency cepstral coefficients for music modeling. In International Symposium on Music Information Retrieval. 2000: 1-13.
|
34 |
Wong E, Sridharan S. Comparison of linear prediction cepstrum coefficients and mel-frequency cepstrum coefficients for language identification. Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP, 2001: 95-98.
|
35 |
Manjunath, Bangalore S, Salembier Philippe, et al. Introduction to MPEG-7: multimedia content description interface. John Wiley & Sons, 2002, 1-396.
|
36 |
夏迎春. 基于知识图谱的农业知识服务系统研究[D].安徽农业大学,2018.
|
|
Xia Y C. Agriculture Knowledge Service System Based on Knowledge Graph[D]. Anhui Agricultural University, 2018.
|
37 |
李岩,胡文岭.基于知识图谱的农业知识问答系统研究[J].智慧农业导刊,2021,1(11):20-22.
|
|
Li Y, Hu W L. Research on Agricultural Knowledge Question and Answer System Based on Knowledge Graph[J]. Journal of Smart Agriculture, 2021,1(11):20-22.
|
38 |
Antol S, Agrawal A, Lu J, et al. VQA: Visual Question Answering. 2015 IEEE International Conference on Computer Vision (ICCV), 2015: 2425-2433.
|
39 |
周子豪. 基于知识图谱的茶叶知识问答系统研究与实现[D].山东农业大学,2021.
|
|
Zhou Z H. Research and Implementation of Tea Knowledge Question Answering System Based on Knowledge Graph[D]. SHANDONG AGRICULTURAL UNIVERSITY, 2021.
|
40 |
Bordes A, Usunier N, Garcia-Duran A, et al. Translating embeddings for modeling multi-relational data[J]. Advances in neural information processing systems, 2013, 26: 1-9.
|
41 |
张颖,陈桂芬.基于Citespace的土壤肥力知识图谱可视化挖掘与分析[J].中国农机化学报,2016,37(03):209-213+229.
|
|
Zhang Y, Chen G F. Citespace-based visualized mining and analysis on knowledge mapping of soil fertility[J]. Journal of Chinese Agricultural Mechanization, 2016,37(03):209-213+229.
|
42 |
翟肇裕,曹益飞,徐焕良,等.农作物病虫害识别关键技术研究综述[J].农业机械学报,2021,52(7):1-18.
|
|
Zhai Z Y, Cao Y F, Xu H L, et al. Review of Key Techniques for Crop Disease and Pest Detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021,52(7):1-18.
|
43 |
邹修国.基于计算机视觉的农作物病虫害识别研究现状[J].计算机系统应用,2011,20(6):238-242.
|
|
Zhou X G. Research Status of Crop Pests Recognition over Computer Vision [J]. Computer Systems & Applications, 2011,20(6):238-242.
|
44 |
于合龙,沈金梦,毕春光,等.基于知识图谱的水稻病虫害智能诊断系统[J].华南农业大学学报,2021,42(05):105-116.
|
|
Yu H L, Shen J M, Bi C G, et al. Intelligent diagnostic system for rice diseases and pests based on knowledge graph [J]. Journal of South China Agricultural University, 2021,42(05):105-116.
|
45 |
Guan L, Zhang J, Geng C. Diagnosis of Fruit Tree Diseases and Pests Based on Agricultural Knowledge Graph. Journal of Physics: Conference Series. IOP Publishing, 2021, 1865(4): 042052.
|
46 |
邹修国.基于计算机视觉的农作物病虫害识别研究现状[J].计算机系统应用,2011,20(06):238-242.
|
|
Zou X G. Research Status of Crop Pests Recognition over Computer Vision[J]. Computer Systems & Applications, 2011,20(06):238-242.
|
47 |
Choudhary N K, Chukkapalli S S L, Mittal S, et al. Yieldpredict: A crop yield prediction framework for smart farms. 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020: 2340-2349.
|
48 |
Chukkapalli S S L, Ranade P, Mittal S, et al. A Privacy Preserving Anomaly Detection Framework for Cooperative Smart Farming Ecosystem[J]. UMBC Student Collection, 2021: 340-347.
|
49 |
马波, 田军仓. 作物生长模拟模型研究综述[J].节水灌溉,2010(02):1-5.
|
|
Ma B, Tian J C. A Review on Crop Growth Simulation Model Research[J]. Water Saving Irrigation,2010(02):1-5.
|
50 |
Das D, Sahoo L, Datta S. A survey on recommendation system[J]. International Journal of Computer Applications, 2017, 160(7): 6-10.
|
51 |
Sharma L, Gera A. A survey of recommendation system: Research challenges[J]. international journal of engineering trends & technology, 2013, 4(5): 1989-1992.
|
52 |
Tejaswini H, MM M P, Pai R M. Knowledge Graph for Aquaculture Recommendation System. 2021 IEEE Mysore Sub Section International Conference (MysuruCon). IEEE, 2021: 366-371.
|