农业大数据学报 ›› 2021, Vol. 3 ›› Issue (3): 23-32.doi: 10.19788/j.issn.2096-6369.210303

• 专题——农业模型 • 上一篇    下一篇

RiceGrow水稻模型品种参数敏感性分析

孟怡君1,2,3,4,5,6(), 邱小雷1,2,3,4,5,6, 刘蕾蕾1,2,3,4,5,6, 刘兵1,2,3,4,5,6, 朱艳1,2,3,4,5,6, 曹卫星1,2,3,4,5,6, 汤亮1,2,3,4,5,6()   

  1. 1.南京农业大学农学院,南京 210095
    2.国家信息农业工程技术中心,南京 210095
    3.智慧农业教育部工程研究中心,南京 210095
    4.农业农村部农作物系统分析与决策重点实验室,南京 210095
    5.江苏省信息农业重点实验室,南京 210095
    6.现代作物生产省部共建协同创新中心,南京 210095
  • 收稿日期:2021-08-25 出版日期:2021-09-26 发布日期:2021-12-22
  • 通讯作者: 汤亮 E-mail:NJAUmyj@126.com;tangl@njau.edu.cn
  • 作者简介:孟怡君,女,硕士研究生,研究方向:作物系统模拟; E-mail: NJAUmyj@126.com
  • 基金资助:
    国家自然科学基金面上项目(31571566)

Sensitivity Analysis of Genetic Parameters of RiceGrow Model

Yijun Meng1,2,3,4,5,6(), Xiaolei Qiu1,2,3,4,5,6, Leilei Liu1,2,3,4,5,6, Bing Liu1,2,3,4,5,6, Yan Zhu1,2,3,4,5,6, Weixing Cao1,2,3,4,5,6, Liang Tang1,2,3,4,5,6()   

  1. 1.College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
    2.National Engineering Technology Center for Information Agriculture, Nanjing 210095, China
    3.Intelligent Agriculture Engineering Research Center, Ministry of Education, Nanjing 210095, China
    4.Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
    5.Jiangsu Key Laboratory for Information Agriculture, Nanjing 210095, China
    6.Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing 210095, China
  • Received:2021-08-25 Online:2021-09-26 Published:2021-12-22
  • Contact: Liang Tang E-mail:NJAUmyj@126.com;tangl@njau.edu.cn

摘要:

品种参数调试是利用作物生长模型进行模拟前的重要步骤,其调试往往花费大量时间和精力,敏感性分析可以帮助识别敏感参数,提高调试效率。本研究针对水稻生长模型RiceGrow,运用SimLab和MATLAB软件,采用EFAST法对水稻品种参数进行敏感性分析,得出不同地区和不同气候情景下(1981-2015年的历史气象数据和全球未来增温2.0℃气候情景)该模型的参数敏感性,并通过TDCC(Top-Down-Coefficient of Concordance)系数计算敏感性排序一致性。结果表明,影响开花期和总干物质量的最敏感参数为最适温度(OT,Optimum Temperature),其次为温度敏感性(TS,Temperature Sensitivity)、光周期敏感性(PS,Photoperiod Sensitivity)、基本早熟性(IE,Intrinsic Earliness),对成熟期和全生育期的最敏感参数为OT,TS、IE、PS、基本灌浆因子(BFF,Basic Filling Factor)也是敏感参数,影响产量的敏感参数主要为最大光合速率(AMX,Maximum CO2 assimilation rate)、比叶面积(SLA,Specific Leaf Area)、收获指数(HI,Harvest Index),其次包括IE、TS、BFF、OT、PS;各个地区和不同气候情景下敏感参数较为一致但敏感性排序差异较大,增温气候情景下的多数参数敏感指数略有增加,少数略有减小;不同气候情景下的参数敏感性变化较小,不同地区之间的变化较大。在对生育期和总干物质量输出变量进行调参时,需要重点调试OT;在低温高纬度的地区需重点调试和温度、光周期及光合有关的参数;在对产量进行调参时,需要重点关注AMX、HI、SLA。LAI相对生长速率和消光系数不敏感,可在参数调试中忽略,也可在模型中剔除进行模型简化。研究结果将为作物模型的本地化、提高参数估计效率提供支持。

关键词: RiceGrow, 作物生长模型, 水稻, 敏感性分析, 品种参数, 生育期, 产量

Abstract:

Genetic parameter calibration is an important step before applying the crop growth model, which often calls for a lot of time and effort. Sensitivity analysis can help to identify sensitive parameters, improve calibration efficiency, and simplify the model. Using Simlab and Matlab software, this study analyzed the sensitivity of rice genetic parameters of RiceGrow model by EFAST method and obtained the parameter sensitivity of the model in different regions and under different climate scenarios (historical meteorological data from 1981 to 2015 and global future warming 2.0℃ climate scenarios). The TDCC (Top-Downward-Coefficient of Concordance) coefficient was used to calculate the sensitivity ranking consistency. The results showed that Optimum Temperature (OT) was the most sensitive parameter affecting flowering period and total dry matter, followed by Temperature Sensitivity (TS), Photoperiod Sensitivity (PS) and Intrinsic Earliness (IE). OT was the most sensitive parameter affecting maturity period and the whole growth period. TS, IE, PS and Basic Filling Factor (BFF) were also sensitive parameters. The sensitive parameters affecting yield are mainly maximum CO2 assimilation rate (AMX), Specific Leaf Area (SLA) and Harvest Index (HI), followed by IE, TS, BFF, OT and PS. The sensitivity parameters in all regions and under different climate scenarios are relatively consistent, but the sensitivity ordering varies greatly. The sensitivity indexes of most parameters under warming climate scenarios slightly increase, while a few slightly decrease. The variation of parameter sensitivity under different climate scenarios is small, while which among different regions is large. When calibrating the model for phenology and dry matter, OT is the most sensitivity. In areas with low temperature and high latitude, the parameters related to temperature, photoperiod and photosynthesis should be focused. When calibrating the parameters of the yield, we need to focus on AMX, HI, SLA. Relative growth rate of LAI is not sensitive, so it can be ignored in parameter calibration, and can also be eliminated from the model to simplify the model. The results would be used to localize crop model and provide a way to improve the efficiency of parameter calibration.

Key words: RiceGrow, crop growth model, rice, sensitivity analysis, genetic parameters, growth period, yield

中图分类号: 

  • S117