农业大数据学报 ›› 2019, Vol. 1 ›› Issue (2): 19-31.doi: 10.19788/j.issn.2096-6369.190202
丁国辉1+,许昊1+,温明星2,3,陈佳玮1,王秀娥3,*(),周济1,4,*()
收稿日期:
2019-03-15
出版日期:
2019-06-26
发布日期:
2019-08-21
通讯作者:
王秀娥,周济
E-mail:xiuew@njau.edu.cn;zhou@njau.edu.cn
作者简介:
丁国辉,男,博士研究生,研究方向:无人机作物表型,小麦育种;E-mail: 2018201009@njau.edu.cn;|许昊,男,硕士研究生,研究方向:植物表型、图像处理;E-mail: 2018801232@njau.edu.cn
基金资助:
Guohui Ding1+,Hao Xu1+,Mingxing Wen2,3,Jiawei Chen1,Xiue Wang3,*(),Ji Zhou1,4,*()
Received:
2019-03-15
Online:
2019-06-26
Published:
2019-08-21
Contact:
Xiue Wang,Ji Zhou
E-mail:xiuew@njau.edu.cn;zhou@njau.edu.cn
摘要:
多尺度表型采集技术通过多种手段获取植物图像和光谱数据,进而基于各类计算机分析算法(如,计算机视觉和机器学习)进行表型分析,得到与产量、品质和抗逆等相关的性状信息,为作物遗传育种、栽培和农业生产提供高通量、大数据的技术支撑。小麦作为我国重要的粮食作物,其关键产量性状的全生育期量化分析有重要意义。本文详细介绍了部分重要的小麦产量相关性状,并通过使用经济型低空无人机对不同关键生育时期中的一些共同的产量性状进行了规模化采集。然后,基于无人机获取的可见光图像,通过第三方专业软件Pix4D完成了全试验田的拼接和三维点云重建,并通过自主开发的性状分析算法对一些重要产量性状和植被指数等完成了自动化分析。同时,针对18个不同的小麦基因型完成了关键生育时期的株高、植被指数、叶面积指数的提取。通过实例验证了基于经济型低空无人机开展小麦产量性状采集的有效方法和高通量分析技术。本研究对降低田间作物表型研究的门槛,促进我国各研究团队采用标准化表型数据采集,统一作物表型数据规范,以及推广使用开源软件自主开发自动化分析技术平台有重要意义。
中图分类号:
丁国辉,许昊,温明星,陈佳玮,王秀娥,周济. 基于经济型低空无人机对小麦重要产量表型性状的多生育时期获取和自动化分析[J]. 农业大数据学报, 2019, 1(2): 19-31.
Guohui Ding,Hao Xu,Mingxing Wen,Jiawei Chen,Xiue Wang,Ji Zhou. Developing cost-effective and low-altitude UAV aerial phenotyping and automated phenotypic analysis to measure key yield-related traits for bread wheat[J]. Journal of Agricultural Big Data, 2019, 1(2): 19-31.
[1] | 王璟璐, 张颖, 潘晓迪 , 等. 作物表型组数据库研究进展及展望[J].中国农业信息. 2019(05):1-11. |
Wang J L, Zhang Y, Pan X D , et al. Research progress and prospect of crop phenotypic database[J].China Agriculture Information. 2019(05):1-11. | |
[2] | 赵广才, 常旭虹, 王德梅 , 等. 小麦生产概况及其发展[J].作物杂志,2018(04):1-7. |
Zhao G C, Chang X H, Wang D M , et al. General situation and development of wheat production[J].Crops. 2018(04):1-7. | |
[3] | 方向明, 李姣媛 .精准农业: 发展效益、国际经验与中国实践[J].农业经济问题,2018(11):28-37. |
Fang X M, Li J Y . Precision agriculture: development benefits, international experience and Chinese practice.Issues in Agricultural Economy,2018(11):28-37. | |
[4] | F. Tardieu, L. Cabrera-Bosquet, T. Pridmore , et al. Plant phenomics, from sensors to knowledge. Current Biology. 2017 Aug 7; 27(15):R770-83. |
[5] | D. Reynolds, J. Ball, A. Bauer , et al. CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management. GigaScience. 2019, Jan 31;8(3): giz009. |
[6] | R. Pieruschka, U. Schurr . Plant Phenotyping: Past, Present, and Future. Plant Phenomics. 2019 Mar 26; 2019: 7507131. |
[7] | H. Q.Ling, S. Zhao, D. Liu , et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013,496(7443):87~ 90. |
[8] | 高宇, 高军萍, 李寒 , 等. 植物表型监测技术研究进展及发展对策[J]. 江苏农业科学, 2017,45(11):5-10. |
Gao Y, Gao J P, Li H , et al. Advances in plant phenotype monitoring technology and development countermeasures. Jiangsu Agricultural Sciences, 2017,45(11):5-10. | |
[9] | 唐惠燕, 倪峰, 李小涛 , 等. 基于Scopus的植物表型组学研究进展分析[J]. 南京农业大学学报, 2018,41(06):1133-1141. |
Tang H Y, Ni F, Li X T , et al. Analysis of the advance in plant phenomics research based on Scopus tools[J]. Journal of Nanjing Agricultural University, 2018,41(06):1133-1141. | |
[10] | 周济, Francois Tardieu, Tony Pridmore , 等. 植物表型组学:发展、现状与挑战[J]. 南京农业大学学报, 2018,41(04):580-588. |
Zhou J, Francois T, Tony P , et al. Plant phenomics:history,present status and challenges[J]. Journal of Nanjing Agricultural University, 2018,41(04):580-588. | |
[11] | 仇瑞承, 魏爽, 张漫 , 等.作物表型组学测量方法综述[J]. 中国农业文摘-农业工程, 2019, 31(01):23-36+55. |
Chou R C, Wei S, Zhang M , et al. A review of the methods of crop phenotypic omics measurement[J].Chinese Agricultural Digest:Agriculture Engineering, 2019, 31(01):23-36+55. | |
[12] |
王姝, 周道玮 . 植物表型可塑性研究进展[J]. 生态学报, 2017,37(24):8161-8169.
doi: 10.5846/stxb201611242412 |
Wang S, Zhou D W . Research on phenotypic plasticity in plants[J]. Acta Ecologica Sinica, 2017,37(24):8161-8169.
doi: 10.5846/stxb201611242412 |
|
[13] | 周秋峰, 于沐, 张果果 . 种植密度对小麦生长及产量的影响[J]. 安徽农业科学, 2018,46(20):35-37. |
Zhou Q F, Yu M, Zhang G G . Effects of Planting Density on the Growth and Yield of Wheat[J]. Journal of Anhui Agricultural Sciences, 2018,46(20):35-37. | |
[14] | 淮贺举, 陆洲, 秦向阳 , 等. 种植密度对小麦产量和群体质量影响的研究进展[J]. 中国农学通报, 2013,29(09):1-4. |
Hui H J, Lu Z, Qin X Y , et al. Advances of Researches in Plant Density Effects on the Wheat Yield and Population Quality[J]. Chinese Agricultural Science Bulletin, 2013,29(09):1-4. | |
[15] | 邵庆勤, 周琴, 王笑 , 等. 种植密度对不同小麦品种茎秆形态特征、化学成分及抗倒性能的影响[J]. 南京农业大学学报, 2018,41(05):808-816. |
Shao Q Q, Zhou Q, Wang X , et al. Effects of planting density on stem morphological characteristics, chemical composition and lodging resistance of different wheat varieties[J]. Journal of Nanjing Agricultural University, 2018,41(05):808-816. | |
[16] | 贾丽娜, 张俊丽, 卢超 , 等. 种植密度对渭北旱作区小麦群体性状和产量的影响[J]. 中国农学通报, 2019,35(07):15-19. |
Jia L N, Zhang J L, Lu C , et al. Planting Density Affects Population Traits and Yield of Wheat in Weibei Arid Region[J]. Chinese Agricultural Science Bulletin, 2019,35(07):15-19. | |
[17] | 武威, 刘涛, 孙成明 , 等. 基于图像处理的小麦种植密度估算研究[J]. 扬州大学学报(农业与生命科学版), 2017,38(01):89-93. |
Wu W, Liu T, Sun C M , et al. Estimation of wheat planting density based on image processing technology[J]. Journal of Yangzhou University(Agricultural and Life Science Edition), 2017,38(01):89-93. | |
[18] | 纪景纯, 赵原, 邹晓娟 , 等. 无人机遥感在农田信息监测中的应用进展[J]. 土壤学报, 2019, 1-13. |
Ji J C, Zhao Y, Zou X J , et al. Application progress of uav remote sensing in farmland information monitoring. Acta Pedologica Sinica, 2019, 1-13. | |
[19] | S. Sankaran, L. Khot, A. Carter . Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand.Computers and Electronics in Agriculture. 2015 vol: 118 pp: 372-379. |
[20] | 佟汉文, 彭敏, 刘易科 , 等 .小麦分蘖成穗规律研究进展[J]. 湖北农业科学, 2017, 56(24):4700-4702+4713. |
Dong H W, Peng M, Liu Y K , et al. Research Progress in Law of Spike Formation from Wheat Tillers[J].Hubei Agricultural Sciences, 2017, 56(24):4700-4702+4713. | |
[21] | 郑永胜 . 有效分蘖受抑制小麦的差异蛋白分析[D]. 青海大学, 2008. |
Zheng Y S . Anaylsis of diversity protein in the titler-inhibitied wheat[D]. Qinghai University. 2008. | |
[22] | 王思宇, 荣晓椒, 樊高琼 , 等. 播期对四川小麦分蘖发生、消亡及成穗特性的影响[J]. 麦类作物学报, 2017,37(05):656-665. |
Wang S Y, Rong X J, Fan G Q , et al. Effect of Sowing Dates on Tiller Occurring, Withering away and Earbearing[J] Journal of Triticeae Crops, 2017,37(05):656-665. | |
[23] | 吴迪, 杨万能, 牛智有 , 等. 小麦分蘖形态学特征X射线-CT无损检测[J]. 农业工程学报, 2017,33(14):196-201. |
Wu D, Yang W N, Niu Z Y , et al. Non-destructive detection of wheat tiller morphological traits based on X-ray CT technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(14):196-201. | |
[24] | R. D.Boyle, F.M.K. Corke, J.H. Doonan , et al. Automated estimation of tiller number in wheat by ribbon detection. Machine Vision and Applications. 2016; 27(5):637-46. |
[25] | M. Abichou, C. Fournier, T. Dornbusch , et al. Parameterising wheat leaf and tiller dynamics for faithful reconstruction of wheat plants by structural plant models. Field Crops Research.Volume 218, 2018,Pages 213-230. |
[26] | 佟汉文, 彭敏, 刘易科 , 等 .小麦分蘖成穗规律研究进展[J]. 湖北农业科学, 2017, 56(24):4700-4702+4713. |
Tong H W, Peng M, Liu Y K , et al. Research Progress in Law of Spike Formation from Wheat Tillers[J]Hubei Agricultural Sciences, 2017, 56(24):4700-4702+4713. | |
[27] | 杨林, 邵慧, 吴青霞 , 等. 小麦分蘖数和单株穗数QTL定位及上位性分析[J]. 麦类作物学报, 2013,33(05):875-882. |
Yang L, Shao H, Wu Q X , et al. QTLs Mapping and Epistasis Analysis for the Number of Tillers and Spike Number per Plant in Wheat[J]. Journal of Triticeae Crops, 2013,33(05):875-882. | |
[28] | 梁子英, 李美霞, 王竹林 , 等. 小麦株高相关性状的QTL分析[J]. 西北农业学报, 2014,23(06):64-72. |
Liang Z Y, Li M X, Wang Z L , et al. Mapping Quantitative Trait Loci for Plant Height Related Characteristics in Wheat[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2014,23(06):64-72. | |
[29] | 张其鲁, 陈香芝, 张立全 , 等. 小麦株型分类探讨[J].山东农业科学,2006(01):17-19. |
Zhang Q L, Chen X Z, Zhang L Q , et al. Classification of wheat plant types[J].Shandong Agricultural Sciences,2006(01):17-19. | |
[30] | 范仲学, 王璞, 梁振兴 , 等. 优化灌溉与施肥对冬小麦冠层结构的影响研究[J].中国生态农业学报,2005(03):79-81. |
Fan Z X, Wang P, Liang Z X , et al. Effects of optimized irrigation and nitrogen fertilization on the canopy structure of winter wheat[J].Chinese Journal of Eco-Agriculture,2005(03):79-81. | |
[31] | 金欣欣, 姚艳荣, 贾秀领 , 等. 基因型和环境对小麦产量、品质和氮素效率的影响[J]. 作物学报, 2019,45(04):635-644. |
Jin X X, Yao Y R, Jia X L , et al. Effects of genotype and environment on wheat yield, quality, and nitrogen use efficiency[J], 2019,45(04):635-644. | |
[32] | 刘建刚, 赵春江, 杨贵军 , 等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016,32(24):98-106. |
Liu J G, Zhao C J, Yang G J , et al. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(24):98-106. | |
[33] | Z. Khan, J. Chopin, J. Cai , et al. Quantitative Estimation of Wheat Phenotyping Traits Using Ground and Aerial Imagery.Remote Sens. 2018,10(6), 950. |
[34] | F. Holman, A. Riche, A. Michalski , et al. High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing.Remote Sensing. 2016 vol: 8 (12) pp: 1031. |
[35] | M. Hassan, M. Yang, A. Rasheed , et al. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform.Plant Science2019 vol: 282 pp: 95-103. |
[36] | J. Bendig, K. Yu, H. Aasen , et al. Combining UAV-based plant height from crop surface models, visible, near infrared vegetation indices for biomass monitoring in barley.nternational Journal of Applied Earth Observation and Geoinformation. 2015 vol: 39 pp: 79-87. |
[37] | D. Reynolds, F. Baret, C. Welcker , et al. What is cost-efficient phenotyping? Optimizing costs for different scenarios. Plant Science. 2019 May 1; 282:14-22. |
[38] | 张瑞, 于振文, 张永丽 , 等. 越冬期测墒补灌对小麦耗水特性和光合有效辐射截获利用的影响[J]. 应用生态学报, 2017,28(03):877-884. |
Zhang R, Yu Z W, Zhang Y L , et al. Effects of supplemental irrigation by measuring soil moisture on water consumption characteristics and radiation utilization[J]. Chinese Journal of Applied Ecology, 2017,28(03):877-884. | |
[39] | Abbad H, El Jaafari S, J. Bort , et al. Comparison of flag leaf and ear photosynjournal with biomass and grain yield of durum wheat under various water conditions and genotypes[J]. Agronomie, 2004,24(1):19-28. |
[40] | 杨忠强, 岳海风, 郜庆炉 , 等. 小麦单株产量性状的相关性及其通径分析[J].种子,2007(07):57-59. |
Yang Z Q, Yue H F, Gao Q L , et al. Correlation and path analysis of yield characters per plant in wheat[J] .Seed, 2007(07):57-59. | |
[41] | 鲁大林 . 小麦植株性状对穗层相对湿度的影响[J].麦类作物学报,1997(04):57-58. |
Lu D L . Effects of wheat plant characters on ear relative humidity[J].Journal of Triticeae Crops,1997(04):57-58. | |
[42] | 谢元澄, 于增源, 姜海燕 , 等. 面向小麦麦穗几何表型测量的精准分割方法研究[J/OL].南京农业大学学报,1-13[2019-04-16]. |
Xie Y C, Yu Z Y, Jiang H Y , et al. Study on precise segmentation method for geometric phenotype measurement of wheat ear[J/OL].Journal of Nanjing Agricultural University,1-13[2019-04-16]. | |
[43] | S. Madec, X. Jin, H. Lu , et al. Ear density estimation from high resolution RGB imagery using deep learning technique.Agricultural and Forest Meteorology. 2019 vol: 264 pp: 225-234. |
[44] | J. A.Gallego, M. L.Buchaillot, N. A.Gutiérrez , et al. Automatic Wheat Ear Counting Using Thermal Imagery.Remote Sens. 2019,11(7), 751. |
[45] | 杜颖, 蔡义承, 谭昌伟 , 等. 基于超像素分割的田间小麦穗数统计方法[J]. 中国农业科学, 2019,52(01):21-33. |
Du Y, Cai Y C, Tan C W , et al. Field Wheat Ears Counting Based on Superpixel Segmentation Method[J]. Scientia Agricultura Sinica, 2019,52(01):21-33. | |
[46] | 路文超, 罗斌, 潘大宇 , 等. 基于图像处理的小麦穗长和小穗数同步测量[J]. 中国农机化报, 2016,37(06):210-215. |
Lu W C, Luo B, Pan D Y , et al. Synchronous measurement of wheat ear length and spikelets number based on image processing[J]. Journal of Chinese Agricultural Mechanization, 2016,37(06):210-215. | |
[47] | G. E.Meyer, J.C. Neto . Verification of color vegetation indices for automated crop imaging applications. Computers and electronics in agriculture. 2008 Oct 1; 63(2):282-93. |
[48] | A. Bauer, J. Ball, J. Colmer , et al. Combining Computer Vision and Deep Learning for High-Throughput Aerial Phenotypic Analysis in Wheat Pre-Breeding [C]. 2019, The 6th International Workshop on Image Analysis Methods for the Plant Sciences (IAMPS), Lyon, France. |
[49] | 薛志伟, 杨春玲, 郭海斌 , 等. 不同水氮处理对冬小麦生长及产量的影响[J]. 安徽农业学, 2016,44(11):31-33. |
Xue Z W, Yang C L, Guo H B , et al. Effects of Different Water and Nitrogen Treatments on Growth and Yield of Winter Wheat[J]. Journal of Anhui Agricultural Sciences, 2016,44(11):31-33 | |
[50] | 刘艳慧, 蔡宗磊, 包妮沙 , 等. 基于无人机大样方草地植被覆盖度及生物量估算方法研究[J]. 生态环境学报, 2018,27(11):2023-2032. |
Liu Y H, Cai Z L, Bao N S , et al. Research of Grassland Vegetation Coverage and Biomass Estimation Method Based on Major Quadrat from UAV Photogrammetry[J]. Ecology and Environmental Sciences, 2018,27(11):2023-2032. | |
[51] | 聂志刚, 李广 . 基于APSIM模型的不同耕作措施旱地小麦叶面积指数动态分析[J]. 土壤与作物, 2013,2(01):43-48. |
Nie Z G, Li G . Analysis on Leaf Area Index Dynamics Based on APSIM under Different Tillage Measures in Dryland Wheat[J]. Siol and Crop, 2013,2(01):43-48. |
[1] | 刘兴龙, 王宇, 王晓曦, 王克勤. 2018—2021年黑龙江省哈尔滨农田瓢虫数据集[J]. 农业大数据学报, 2022, 4(4): 39-44. |
[2] | 袁培森, 薛铭家, 熊迎军, 翟肇裕, 徐焕良. 基于无人机高通量植物表型大数据分析及应用研究综述[J]. 农业大数据学报, 2021, 3(3): 62-75. |
[3] | 靳霞菲, 陈先冠, 宫志宏, 冯利平. 小麦模型WheatSM参数调试优化方法研究[J]. 农业大数据学报, 2021, 3(3): 13-22. |
[4] | 张晓艳, 孟丽, 王丽丽, 刘锋, 刘佳佳, 卢德成. 基于大数据的我国小麦市场价格波动特点分析——以山东省为例[J]. 农业大数据学报, 2020, 2(3): 75-83. |
[5] | 冯芳君,严明,沈国辉,陈振挺,田志慧,范佩清,梅捍卫. 基于幼苗图像分析鉴定水稻品种旱直播耐深播特性[J]. 农业大数据学报, 2019, 1(2): 32-40. |
[6] | 钱婷婷,陆声链,郑秀国,赵京音,王剑,杨娟. 黄瓜叶片分布的异质性表型特征分析与模型建立[J]. 农业大数据学报, 2019, 1(2): 41-49. |
[7] | 赵春江. 植物表型组学大数据及其研究进展[J]. 农业大数据学报, 2019, 1(2): 5-14. |
[8] | 戴国新,陈国兴,杨万能,冯慧. 基于高光谱的水稻精米品质参数测量技术研究[J]. 农业大数据学报, 2019, 1(2): 51-63. |
[9] | 李晓曼,张扬,徐倩,谢能付. 基于文献计量的植物表型组学研究进展分析[J]. 农业大数据学报, 2019, 1(2): 64-75. |
|