农业大数据学报 ›› 2021, Vol. 3 ›› Issue (4): 70-76.doi: 10.19788/j.issn.2096-6369.210408

• 数据论文 • 上一篇    

应用于农业场景视觉解析任务的番茄数据集

周玲莉(), 任妮, 张文翔, 程雅雯, 陈诚, 易中懿()   

  1. 江苏省农业科学院信息中心,南京 210014
  • 收稿日期:2021-11-12 出版日期:2021-12-26 发布日期:2022-01-28
  • 通讯作者: 易中懿 E-mail:20210054@jaas.ac.cn;yzy201@163.com
  • 作者简介:[1] 周玲莉|周玲莉,女,硕士,研究方向:计算机视觉; E-mail: 20210054@jaas.ac.cn|任妮,张文翔,等. 应用于农业场景视觉解析任务的番茄数据集[DB/OL]. 国家农业科学数据中心. DOI: 10.12205/E0292.20220113.36.cs.1926.|任妮,张文翔,等. 应用于农业场景视觉解析任务的番茄数据集[DB/OL]. 国家农业科学数据中心. DOI: 10.12205/E0292.20220113.36.cs.1926.
  • 基金资助:
    江苏省重点研发(现代农业)项目——基于数智融合的设施栽培物联网关键技术及装备研发(BE2021379)

Tomato Dataset for Agricultural Scene Visual-Parsing Tasks

Lingli Zhou(), Ni Ren, Wenxiang Zhang, Yawen Cheng, Cheng Chen, Zhongyi Yi()   

  1. Information Center of Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2021-11-12 Online:2021-12-26 Published:2022-01-28
  • Contact: Zhongyi Yi E-mail:20210054@jaas.ac.cn;yzy201@163.com

摘要:

农业机器人是农业现代化发展中的一项重要组成部分,计算机视觉技术通过对作物和环境的感知与解析,有效促进其在农业领域的落地与应用。但由于农业场景的复杂性、多样性,当前先进计算机视觉方法所需要的详细且注释的大规模图像数据集在农业领域十分稀缺,这也是阻碍计算机视觉技术在农业领域发展的一个主要瓶颈。针对这一痛点,该文提供了一个可用于图像语义分割、图像实例分割、目标检测任务的大规模番茄图像数据集。该数据集由两部分组成,分别为合成部分和经验部分。其中合成部分使用Wageningen大学等人提出的数据合成方法,生成3250张合成番茄图像以及对应的像素级别语义分割标签图;经验部分由RGB相机拍摄的750张单目图像和400张双目图像构成,并人工对它们部分进行了包括实例分割、目标检测等在内的精细标注。研究旨在从多个角度丰富该数据集,包括数据集的大小、标注信息的多维度、场景的复杂性等方面,为今后利用计算机视觉技术解决农业领域问题提供数据基础。

关键词: 番茄, 图像, 农业领域, 场景解析

Abstract:

Agricultural robots are an important part of the development of agricultural modernization, and computer vision technology effectively promotes their application in the field of agriculture by perceiving and analyzing crops and the environment. However, because of the complexity and diversity of agricultural scenes, the detailed and annotated large-scale image datasets required by advanced computer vision methods are scarce in the field of agriculture. This lack of datasets is the main challenge in the development of computer vision technology in the field. To solve this problem, this paper presents a large-scale tomato image dataset that can be used for semantic image segmentation, instance segmentation, target detection, and other tasks. The dataset consists of synthetic and real images. The synthetic images include 3250 synthetic tomato images and the corresponding pixel-level semantic segmentation label images; the real images consist of 750 monocular images and 400 binocular images taken by RGB cameras, some of which have detailed manual labels for instance segmentation and target detection. This research aims to enrich many aspects of the dataset, including its capacity, the dimensionality of the annotation information, and the complexity of the scene, and to provide data support for solving future problems in the field of agriculture using computer vision technology.

Key words: tomato, image, agricultural field, scene parsing

中图分类号: 

  • P315.69