[1] |
张兆旭, 秦其明. 基于多源遥感数据的黄淮海平原农业干旱监测研究[J]. 农业与技术, 2021, 41(2): 84-92.
|
|
Zhang Z X, Qin Q M. Study on agricultural drought monitoring in Huang-Huai-Hai plain based on multi-source remote sensing data[J]. Agriculture and Technology, 2021, 41(2): 84-92.
|
[2] |
Mladenova I E, Bolten J D, Crow W T, et al. Evaluating the operational application of SMAP for global agricultural drought monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3387-3397.
doi: 10.1109/JSTARS.2019.2923555
|
[3] |
Wilhite D A, Glantz M H. Understanding: the drought phenomenon: the role of definitions[J]. Water International, 1985, 10(3): 111-120.
doi: 10.1080/02508068508686328
|
[4] |
Mishra A K, Desai V R. Drought forecasting using stochastic models[J]. Stochastic Environmental Research and Risk Assessment, 2005, 19(5): 326-339.
doi: 10.1007/s00477-005-0238-4
|
[5] |
Mishra A K, Singh V P. A review of drought concepts[J]. Journal of hydrology, 2010, 391(1-2): 202-216.
doi: 10.1016/j.jhydrol.2010.07.012
|
[6] |
Wilhite D A, Svoboda M D, Hayes M J. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness[J]. Water Resources Management, 2007, 21(5): 763-774.
doi: 10.1007/s11269-006-9076-5
|
[7] |
Maes W, Steppe K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review[J]. Journal of Experimental Botany, 2012, 63(13): 4671-4712.
doi: 10.1093/jxb/ers165
pmid: 22922637
|
[8] |
Kanellou E, Domenikiotis C, Tsiros E, et al. Satellite-based drought estimation in Thessaly[J]. European Water, 2008, 23(24): 111-122.
|
[9] |
Qin Q, Wu Z, Zhang T, et al. Optical and thermal remote sensing for monitoring agricultural drought[J]. Remote Sensing, 2021, 13(24): 1-34.
doi: 10.3390/rs13010001
|
[10] |
宋炜. 遥感监测干旱的方法综述[J]. 中国西部科技, 2011, 10(13): 42-44.
|
|
Song W. Summary of drought monitoring methods by remote sensing[J]. Science and Technology of West China, 2011, 10(13): 42-44.
|
[11] |
Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2-3): 213-224.
doi: 10.1016/S0034-4257(01)00274-7
|
[12] |
王鹏新, 龚健雅, 李小文, 等. 基于植被指数和土地表面温度的干旱监测模型[J]. 地球科学进展, 2003, 18(4): 40-46.
|
|
Wang P X, Gong J Y, Li X W, et al. Drought monitoring model based on vegetation index and land surface temperature[J]. Advances in Earth Science, 2003, 18(4): 40-46.
|
[13] |
Bai J, Yuan Y, Di L. Comparison between TVDI and CWSI for drought monitoring in the Guanzhong Plain, China[J]. Journal of Integrative Agriculture, 2017, 16(2): 389-397.
doi: 10.1016/S2095-3119(15)61302-8
|
[14] |
Liang L, Zhao S, Qin Z, et al. Drought change trend using MODIS TVDI and its relationship with climate factors in China from 2001 to 2010[J]. Journal of Integrative Agriculture, 2014, 13(7): 1501-1508.
doi: 10.1016/S2095-3119(14)60813-3
|
[15] |
Shashikant V, Mohamed Shariff A R, Wayayok A, et al. Utilizing TVDI and NDWI to classify severity of agricultural drought in Chuping, Malaysia[J]. Agronomy, 2021, 11(6): 1-18.
doi: 10.3390/agronomy11010001
|
[16] |
Zhang Z, Xu W, Shi Z, et al. Establishment of a comprehensive drought monitoring index based on multisource remote sensing data and agricultural drought monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2113-2126.
doi: 10.1109/JSTARS.4609443
|