[1] |
毛克彪, 张晨阳, 施建成, 等. 基于人工智能的地球物理参数反演范式理论及判定条件[J]. 智慧农业, 2023, 5(2): 161-171.
|
[2] |
MAO K B, WANG H, SHI J C, et al. A general paradigm for retrieving soil moisture and surface temperature from passive microwave remote sensing data based on artificial intelligence[J]. Remote Sensing, 2023, 15(7): 1793.
doi: 10.3390/rs15071793
|
[3] |
MAO K, SHI J, LI Z, et al. Land surface temperature and emissivity retrieved from the AMSR passive microwave data[C/OL]. International Geoscience and Remote Sensing Symposium (IGARSS05), 25-29 July 2005. DOI:10.1109/IGARSS.2005.1525420.
|
[4] |
毛克彪, 施建成, 李召良, 等. 用被动微波AMSR数据反演地表温度及发射率方法研究[J]. 自然资源遥感, 2005(3):14-18.
|
[5] |
毛克彪, 施建成, 李召良, 等. 一个针对被动微波数据AMSR-E数据反演地表温度的物理统计算法[J]. 中国科学D辑, 2006, 36(12):1170-1176.
|
[6] |
MAO K B, SHI J C, TANG H J, et al. A neural-network technique for retrieving land surface temperature from AMSR-E passive microwave data[C/OL]. International Geoscience and Remote Sensing Symposium (IGARSS07), 23-28 July 2007. DOI:10.1109/IGARSS. 2007.44238357.
|
[7] |
毛克彪, 王道龙, 李滋睿, 等. 利用AMSR-E被动微波数据反演地表温度的神经网络算法[J]. 高技术通讯, 2009, 19(11): 1195-1200.
|
[8] |
MAO K B, ZUO Z Y, SHEN X Y, et al. Retrieval of land-surface temperature from AMSR2 data using a deep dynamic learning neural network[J]. Chinese Geographical Science, 2018, 28(1): 1-11.
doi: 10.1007/s11769-018-0930-1
|
[9] |
TAN J C, NOURELDEEN N, MAO K B, et al. Deep learning convolutional neural network for the retrieval of land surface temperature from AMSR2 data in China[J]. Sensors, 2019, 19(13):ID 2987.
|
[10] |
MAO K, TANG H, ZHANG L, et al. A method for retrieving soil moisture in Tibet region by utilizing microwave index from TRMM/TMI data[J]. International Journal of Remote Sensing, 2008, 29(10): 2905-2925.
|
[11] |
毛克彪, 胡德勇, 黄健熙, 等. 针对被动微波数据AMSR-E数据的土壤水分反演算法[J]. 高技术通讯, 2010, 20(6): 651-659.
|
[12] |
谭建灿, 毛克彪, 左志远, 等. 基于卷积神经网络和AMSR2 微波遥感的土壤水分反演研究[J]. 高技术通讯, 2018, 8(5):399-408.
|
[13] |
毛克彪, 覃志豪, 施建成, 等. 针对MODIS影像的劈窗算法研究[J]. 武汉大学学报(信息科学版), 2005, 30(8):703-707.
|
[14] |
MAO K B, QIN Z, SHI J, et al. A practical split-window algorithm for retrieving land surface temperature from MODIS data[J]. International Journal of Remote Sensing, 2005, 26:3181-3204.
doi: 10.1080/01431160500044713
|
[15] |
毛克彪, 覃志豪, 宫鹏, 等. 劈窗算法LST精度评价和参数敏感性分析[J]. 中国矿业大学学报, 2005(3):318-322.
|
[16] |
QIN Z H, DALL'OLMO G, KARNIELI A, et al. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D19): 22655-22670.
doi: 10.1029/2000JD900452
|
[17] |
WAN Z, DOZIER J. A generalized split-window algorithm for retrieving land surface temperature measurement from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34:892-905.
doi: 10.1109/36.508406
|
[18] |
LI Z L, BECKER F. Feasibility of land surface temperature and emissivity determination from AVHRR data[J]. Remote Sensing of Environment, 1993, 43(1): 67-85.
doi: 10.1016/0034-4257(93)90065-6
|
[19] |
WAN Z M, LI Z L. A Physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35: 980-996.
doi: 10.1109/36.602541
|
[20] |
毛克彪, 施建成, 覃志豪, 等. 一个针对ASTER数据同时反演地表温度和比辐射率的四通道算法[J]. 遥感学报, 2006, 10(4):593-599.
|
[21] |
毛克彪, 唐华俊, 李丽英, 等. 一个从MODIS数据同时反演地表温度和发射率的神经网络算法[J]. 遥感信息, 2007, 22(4):9-15, 8.
|
[22] |
毛克彪, 唐华俊, 陈仲新, 等. 一个用神经网络优化的针对ASTER数据反演地表温度和发射率的多波段算法[J]. 国土资源遥感, 2007, 19(3): 18-22.
|
[23] |
MAO K B, SHI J C, LI Z L, et al. An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D21): ID D21102.
|
[24] |
MAO K B, SHI J C, TANG H J, et al. A neural network technique for separating land surface emissivity and temperature from ASTER imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):200-208.
doi: 10.1109/TGRS.2007.907333
|
[25] |
MAO K B, LI S M, WANG D L, et al. Retrieval of land surface temperature and emissivity from ASTER1B data using a dynamic learning neural network[J]. International Journal of Remote Sensing, 2011, 32(19):5413-5423.
doi: 10.1080/01431161.2010.501043
|
[26] |
毛克彪, 杨军, 韩秀珍, 等. 基于深度动态学习神经网络和辐射传输模型地表温度反演算法研究[J]. 中国农业信息, 2018, 30(5):47-57.
|
[27] |
WANG H, MAO K B, YUAN Z J, et al. A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning[J]. Remote sensing of environment, 2021, 265: ID 112665.
|
[28] |
CRESSWELL M P, MORSE A P, THOMSON M C, et al. Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model[J]. International Journal of Remote Sensing, 1999, 20(6):1125-32.
doi: 10.1080/014311699212885
|
[29] |
MOSTOVOY G V, KING R L, REDDY K R, et al. Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi[J]. Mapping Sciences & Remote Sensing, 2006, 43(1):78-110.
|
[30] |
徐永明, 覃志豪, 万洪秀. 热红外遥感反演近地层气温的研究进展[J]. 国土资源遥感, 2011(1): 9-14.
|
[31] |
MAO K B, TANG H J, WANG X F, et al. Near-surface air temperature estimation from ASTER data based on neural network algorithm[J]. International Journal of Remote Sensing, 2008, 29(20): 6021-6028.
doi: 10.1080/01431160802192160
|
[32] |
毛克彪, 马莹, 夏浪, 等. 用MODIS数据反演近地表空气温度的RM-NN算法[J]. 高技术通讯, 2013, 23(5):462-466.
|
[33] |
DU B Y, MAO K B, BATENI S M, et al. A novel fully coupled physical-statistical-deep learning method for retrieving near-surface air temperature from multisource data[J]. Remote Sensing, 2022, 14(22): ID 5812.
|
[34] |
MAO K, QIN Z, XU B, et al. The Influence analysis of water content for the accuracy of practical split-window algorithm[C]. International Geoscience and Remote Sensing Symposium (IGARSS05), 25-29 July 2005. DOI:10.1109/IGARSS.2005.1526538.
|
[35] |
毛克彪, 唐华俊, 周清波, 等. 实用劈窗算法的改进及大气水汽含量对精度影响评价[J]. 武汉大学学报(信息科学版), 2008, 33(2): 116-119.
|
[36] |
MAO K B, LI H T, HU D Y, et al. Estimation of water vapor content in near-infrared bands around 1 μm from MODIS data by using RM-NN[J]. Optics Express, 2010, 18(9): 9542-9554.
doi: 10.1364/OE.18.009542
|
[37] |
MAO K B, SHEN X Y, ZUO Z Y, et al. An advanced radiative transfer and neural network scheme and evaluation for estimating water vapor content from MODIS data[J]. Atmosphere, 2017, 8(8):ID 139.
|
[38] |
MEI R, MAO K B, SHI J, et al. A novel physics-statistical coupled paradigm for retrieving integrated water vapor content based on artificial intelligence[J]. Remote Sensing, 2023, 15(17):4250. https:// doi.org/ 10.3390/rs15174250.
doi: 10.3390/rs15174250
|
[39] |
CHEN K S, WU T, TSANG L, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 44(1):90-101.
doi: 10.1109/TGRS.2005.859340
|
[40] |
毛克彪, 覃志豪. 大气辐射传输模型及MODTRAN中大气透过率计算[J]. 空间与测绘, 2004, 27(2):1-3.
|