[1] |
Zhu J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167: 313-324. https://doi.org/10.1016/j.cell.2016.08.029.
doi: 10.1016/j.cell.2016.08.029
|
[2] |
Syed A, Sarwar G, Shah S H, et al. Soil salinity research in 21st century in Pakistan: its impact on availability of plant nutrients, growth and yield of crops[J]. Communications in Soil Science and Plant Analysis, 2021, 52 (3): 183-200. https://doi.org/10.1080/00103624.2020.1854294.
doi: 10.1080/00103624.2020.1854294
|
[3] |
Evans M J, Choi W G, Gilroy S, et al. A ROS-assisted calcium wave dependent on the AtR BODH NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress[J]. Plant Physiology, 2016, 171(3): 1771-1784. https://doi.org/10.1104/pp.16.00215.
doi: 10.1104/pp.16.00215
|
[4] |
Li J J, Ma J J, Guo H L, et al. Growth and physiological responses of two phenotypically distinct accessions of centipedegrass (Eremochloa ophiuroides (Munro) Hack.) to salt stress[J]. Plant Physiology and Biochemistry, 2018, 126: 1-10. https://doi.org/10.1016/j.plaphy.2018.02.018.
doi: 10.1016/j.plaphy.2018.02.018
|
[5] |
Niazian M, Sadat-Noori S A, Tohidfar M, et al. Agrobacterium- mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): an important industrial medicinal plant[J]. Industrial Crops and Products, 2019, 132: 29-40. https://doi.org/10.1016/j.indcrop.2019.02.005.
doi: 10.1016/j.indcrop.2019.02.005
|
[6] |
Li H Y, Tang X Q, Yang X Y, et al. Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress[J]. Scientific Reports, 2021, 11(1): 12878. https://doi.org/10.1038/s41598-021-92317-6.
doi: 10.1038/s41598-021-92317-6
|
[7] |
Aghaei K, Ehsanpour A A, Komatsu S. Potato responds to salt stress by increased activity of antioxidant enzymes[J]. Journal of Integrative Plant Biology, 2009, 51: 1095-1103. https://doi.org/10.1111/j.1744-7909.2009.00886.x.
doi: 10.1111/j.1744-7909.2009.00886.x
|
[8] |
Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016.
doi: 10.1016/j.plaphy.2010.08.016
pmid: 20870416
|
[9] |
Tang J, Liu Q Q, Yuan H Y, et al. Molecular analysis of a novel alkaline metal salt (NaCl)-responsive WRKY transcription factor gene IlWRKY1 from the halophyte Iris lactea var. Chinensis[J]. International Biodeterioration and Biodegradation, 2018, 127: 139-145. https://doi.org/10.1016/j.ibiod.2017.11.021.
doi: 10.1016/j.ibiod.2017.11.021
|
[10] |
Sun G L. MicroRNAs and their diverse functions in plants[J]. Plant Molecular Biology, 2012, 80: 17-36. https://doi.org/10.1007/s11103-011-9817-6.
doi: 10.1007/s11103-011-9817-6
pmid: 21874378
|
[11] |
Lee R C, Feinbaum R L, Ambros V. The C-Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75: 843-854. https://doi.org/10.1016/0092-8674(93)90529-Y.
doi: 10.1016/0092-8674(93)90529-y
pmid: 8252621
|
[12] |
Parmar S, Gharat S A, Tagirasa R, et al. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity[J]. PLoS One, 2020, 15: e0230958. https://doi.org/10.1371/journal.pone.0230958.
|
[13] |
Tyagi S, Sharma S, Ganie S A, et al. Plant microRNAs: biogenesis, gene silencing, web-based analysis tools and their use as molecular markers[J]. 3 Biotech, 2019, 9: 413. https://doi.org/10.1007/s13205-019-1942-y.
doi: 10.1007/s13205-019-1942-y
pmid: 31696018
|
[14] |
Chandran V, Wang H, Gao F, et al. MiR396-OsGRFs module balances growth and rice blast disease-resistance[J]. Frontiers in Plant Science, 2019, 9:1999. https://doi.org/10.3389/fpls.2018.01999.
doi: 10.3389/fpls.2018.01999
|
[15] |
Meng Y, Mao J P, Tahir M M, et al. Mdm-miR160 participates in auxin-induced adventitious root formation of apple rootstock[J]. Scientia Horticulturae, 2020, 270: 109442. https://doi.org/10.1016/j.scienta.2020.109442.
doi: 10.1016/j.scienta.2020.109442
|
[16] |
Wang Y M, Liu W W, Wang X W, et al. MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar[J]. Horticulture Research, 2020, 7: 118. https://doi.org/10.1038/s41438-020-00341-w.
doi: 10.1038/s41438-020-00341-w
|
[17] |
Luan M D, Xu M Y, Lu Y M, et al. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves[J]. Gene, 2015, 55: 178-85. https://doi.org/10.1016/j.gene.2014.11.001.
|
[18] |
Wang W, Liu D, Chen D D, et al. MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress[J]. RNA Biology, 2019, 16: 362-375. https://doi.org/10.1080/15476286.2019.1574163.
doi: 10.1080/15476286.2019.1574163
pmid: 30676211
|
[19] |
Ma Y, Xue H, Zhang F, et al. The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression[J]. Plant Biotechnology Journal, 2021, 19: 311-323. https://doi.org/10.1111/pbi.13464.
doi: 10.1111/pbi.v19.2
|
[20] |
Wang M, Guo W, Li J, et al. The miR528-AO module confers enhanced salt tolerance in rice by modulating the ascorbic acid and abscisic acid metabolism and ROS scavenging[J]. Journal of Agricultural and Food Chemistry, 2021, 69(31): 8634-8648. https://doi.org/10.1021/acs.jafc.1c01096.
doi: 10.1021/acs.jafc.1c01096
pmid: 34339211
|
[21] |
王继勋, 梅闯, 闫鹏, 等. 新疆苹果产业现状、存在问题及对策建议[J]. 农村科技, 2022(3):65-70.
|
[22] |
张志晓, 曾丽蓉, 赵嘉菱, 等. 五种苹果砧木的生长及生理特性对盐胁迫的响应[J]. 北方园艺, 2017(3):19-25.
|