A Small Object Detection Model Based on Improved YOLO

  • YE DuanNan ,
  • LI GenTian
Expand
  • China University of Petroleum, No. 66, West Changjiang Road, Huangdao District, Qingdao 266580, China

Received date: 2024-10-10

  Accepted date: 2024-11-07

  Online published: 2025-06-23

Abstract

With the rapid development of deep learning technology, object detection has been widely applied in multiple fields. However, small object detection has limited detection performance due to its small size and unclear features. To address this issue, this paper proposes an improved object detection model based on YOLOv8. This model integrates optimization strategies such as ghost bottleneck network, multi-scale free attention module, improved feature pyramid network, and dynamic Soft NMS, aiming to improve the detection accuracy of dense small targets and the computational efficiency of the model. Through experimental validation on a self-made dataset, it has been demonstrated that the improved YOLO model outperforms existing mainstream models in terms of precision, recall rate, and mAP@0.5, which are key metrics, effectively balancing the model's parameter count and floating-point computational load. The experimental results show that the proposed method achieves model lightweighting while ensuring detection accuracy, providing an effective solution for object detection tasks on resource limited embedded devices.

Cite this article

YE DuanNan , LI GenTian . A Small Object Detection Model Based on Improved YOLO[J]. Journal of Agricultural Big Data, 2025 , 7(2) : 173 -182 . DOI: 10.19788/j.issn.2096-6369.000073

References

[1] CHENG Y, LAI X, XIA Y, et al. Infrared Dim Small Target Detection Networks: A Review. Sensors (Basel, Switzerland), 2024, 24(12): 3885.
[2] BENGAMRA S, MZOUGHI O, BIGAND A, et al. A comprehensive survey on object detection in Visual Art: taxonomy and challenge. Multimedia Tools and Applications, 2023, 83(5):14637-14670.
[3] 张春节, 罗瑞林, 卢琳, 等. 基于MobileNet和迁移学习的微带青烟叶图像识别. 云南师范大学学报(自然科学版), 2023, 43(4):46-48.
[4] LING X, ZHANG C, YAN Z, et al. Infrared Dim and small target detection based on Local-Global Feature Fusion. Applied Sciences, 2024, 14(17):7878.
[5] WEI W, CHEN Y, HE J, et al. A review of small object detection based on deep learning. Neural Computing and Applications, 2024, 36(12):6283-6303.
[6] 刘一江, 樊福景, 王通. 基于改进YOLOv5的安全帽小目标检测算法. 信息技术与信息化, 2024(5):115-119.
[7] 田春欣, 陈绪君, 郑有凯. 基于密集连接任务对齐的小目标检测算法. 计算机工程与设计, 2024, 45(4):1032-1038.
[8] 田鹏, 毛力. 改进YOLOv8的道路交通标志目标检测算法. 计算机工程与应用, 2024, 60(8):202-212.
[9] 吴锦达, 李强. 基于深度学习的遥感图像目标检测. 软件工程, 2024, 27(10):7-11.
[10] 郭越, 杨江涛, 刘志. 复杂场景下的无人机小目标检测算法. 工业控制计算机, 2024, 37(9):33-34+37.
[11] 敬辉, 葛动元, 姚锡凡. 基于改进注意力与多尺度特征的车辆识别. 计算机工程与设计, 2024, 45(10):3120-3127.
[12] 臧珂. 结合非对称卷积组与通道注意力的遥感影像建筑检测方法. 测绘与空间地理信息, 2024, 47(10):87-90.
[13] WANG G, LI Q, WANG N, et al. SAFPN: a full semantic feature pyramid network for object detection. Pattern Analysis and Applications, 2023, 26(4):1729-1739.
[14] 冯新伟, 黄宇祥, 王忠立. 基于卷积块注意力模块和双向特征金字塔网络的接触网支持装置检测方法研究. 铁道技术监督, 2023, 51(4):16-24.
[15] CHEN Y, WANG L, DING B, et al. Automated Alzheimer's disease classification using deep learning models with Soft-NMS and improved ResNet 50 integration. Journal of Radiation Research and Applied Sciences, 2024, 17(1):100782.
Outlines

/