[1] |
Shen Z, Chen L, Ding X, et al. Long-term variation (1960-2003) and causal factors of non-point-source nitrogen and phosphorus in the upper reach of the Yangtze River[J]. Journal of Hazardous Materials, 2013, 252: 45-56. DOI:10.1016/j.jhazmat.2013.02.039.
|
[2] |
Shen Q, Wang Y, Wang X, et al. Comparing interpolation methods to predict soil total phosphorus in the Mollisol area of Northeast China[J]. Catena, 2019, 174: 59-72. DOI:10.1016/j.catena.2018.10.052.
|
[3] |
Kumar S, Lal R, Liu D. A geographically weighted regression kriging approach for mapping soil organic carbon stock[J]. Geoderma, 2012, 189: 627-634. DOI:10.1016/j.geoderma.2012.05.022.
|
[4] |
Wang K, Zhang C, Li W. Predictive mapping of soil total nitrogen at a regional scale: A comparison between geographically weighted regression and cokriging[J]. Applied Geography, 2013, 42: 73-85. DOI:10.1016/j.apgeog.2013.04.002.
|
[5] |
Song X-D, Brus D J, Liu F, et al. Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China[J]. Geoderma, 2016, 261: 11-22. DOI:10.1016/j.geoderma.2015.06.024.
|
[6] |
Khaledian Y, Miller B A. Selecting appropriate machine learning methods for digital soil mapping[J]. Applied Mathematical Modelling, 2020, 81: 401-418. DOI:10.1016/j.apm.2019.12.016.
|
[7] |
Wadoux A M-C, Minasny B, McBratney A B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions[J]. Earth-Science Reviews, 2020, 210: 103359. DOI:10.1016/j.earscirev.2020.103359.
|
[8] |
王铭鑫, 范超, 高秉博, 等. 融合半变异函数的空间随机森林插值方法[J]. 中国生态农业学报(中英文), 2022, 30(3): 451-457. DOI:10.12357/cjea.20210628.
|
[9] |
彭涛, 赵丽, 张爱军, 等. 土壤全氮的无人机高光谱响应特征及估测模型构建[J]. 农业工程学报, 2023, 39(4): 92-101. DOI:10.11975/j.issn.1002-6819.202211021.
|
[10] |
Hengl T, Leenaars J G, Shepherd K D, et al. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning[J]. Nutrient Cycling in Agroecosystems, 2017, 109: 77-102. DOI:10.1007/s10705-017-9870-x.
|
[11] |
Gomez C, Chevallier T, Moulin P, et al. Prediction of soil organic and inorganic carbon concentrations in Tunisian samples by mid-infrared reflectance spectroscopy using a French national library[J]. Geoderma, 2020, 375: 114469. DOI:10.1016/j.geoderma.2020.114469.
|
[12] |
Ramirez-Lopez L, Behrens T, Schmidt K, et al. The spectrum-based learner: A new local approach for modeling soil vis-NIR spectra of complex datasets[J]. Geoderma, 2013, 195: 268-279. DOI:10.1016/j.geoderma.2012.12.014.
|
[13] |
Gao B, Stein A, Wang J. A two-point machine learning method for the spatial prediction of soil pollution[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 108: 102742. DOI:10.1016/j.jag.2022.102742.
|
[14] |
王雨雪, 杨柯, 高秉博, 等. 基于两点机器学习方法的土壤有机质空间分布预测[J]. 农业工程学报, 2022, 38(12): 65-73. DOI:10.11975/j.issn.1002-6819.2022.12.008.
|
[15] |
霍明珠, 高秉博, 乔冬云, 等. 基于APCS-MLR受体模型的农田土壤重金属源解析[J]. 农业环境科学学报, 2021, 40(05): 978-986.
|
[16] |
Wang Q, Xie Z, Li F. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale[J]. Environmental Pollution, 2015, 206: 227-235. DOI:10.1016/j.envpol.2015.06.040.
pmid: 26188913
|