农业大数据学报 ›› 2021, Vol. 3 ›› Issue (4): 20-28.doi: 10.19788/j.issn.2096-6369.210403
贺佳1,2(), 王来刚1,2(), 郭燕1,2, 张彦1,2, 杨秀忠1,2, 刘婷1,2, 张红利1,2
收稿日期:
2021-07-08
出版日期:
2021-12-26
发布日期:
2022-01-28
通讯作者:
王来刚
E-mail:hejia2011@163.com;wlaigang@sina.com
作者简介:
贺佳,男,博士,研究方向:农业遥感应用及高效农作制度;E-mail:基金资助:
Jia He1,2(), Laigang Wang1,2(), Yan Guo1,2, Yan Zhang1,2, Xiuzhong Yang1,2, Ting Liu1,2, Hongli Zhang1,2
Received:
2021-07-08
Online:
2021-12-26
Published:
2022-01-28
Contact:
Laigang Wang
E-mail:hejia2011@163.com;wlaigang@sina.com
摘要:
叶面积指数(leaf area index,LAI)是表征作物生长信息的重要参数,利用无人机遥感平台获取农作物光谱信息定量反演LAI对精确监测作物生长情况具有重要意义。本文以玉米为研究对象,利用无人机(unmanned aerial vehicle,UAV)搭载MicaSense RedEdge-M多光谱成像仪获取玉米拔节期、抽雄期、成熟期等关键生育期内低空遥感影像,同步采集地面LAI,基于多光谱信息构建植被指数并研究其与LAI的定量关系,进一步建立玉米LAI估算模型,对比分析筛选最优植被指数与最适监测时期。实验发现在拔节期、抽雄期、成熟期玉米LAI与NDVI、OSAVI、EVI、NDRE均具有较好的相关性;在不同时期分别基于OSAVI、NDRE、NDRE建立了LAI监测模型,模型监测精度分别为0.549、0.753、0.733;验证模型精度分别为0.907、0.932、0.926,模型估算值与田间实测值间相对误差分别为8.57、8.37、9.24,均方根误差分别为0.104、0.087、0.091;基于不同生育时期LAI估算模型进行田块尺度的LAI空间分布制图,估算值与实测值的决定系数分别为0.883、0.931、0.867;相对误差分别为:9.17、8.86、9.32。结果表明基于MicaSense RedEdge-M多光谱成像仪能有效估算玉米关键生育时期LAI,可为定量实时估算田块尺度的玉米LAI提供理论依据。
中图分类号:
贺佳, 王来刚, 郭燕, 张彦, 杨秀忠, 刘婷, 张红利. 基于无人机多光谱遥感的玉米LAI估算研究[J]. 农业大数据学报, 2021, 3(4): 20-28.
Jia He, Laigang Wang, Yan Guo, Yan Zhang, Xiuzhong Yang, Ting Liu, Hongli Zhang. Estimating the Leaf Area Index of Maize based on Unmanned Aerial Vehicle Multispectral Remote Sensing[J]. Journal of Agricultural Big Data, 2021, 3(4): 20-28.
表1
无人机多光谱遥感监测平台主要参数"
设备 Equipment | 参数 Parameter | 参数值 Value | ||
---|---|---|---|---|
无人机遥感平台 UAV | 有效载荷 Playload | 0.8 kg | ||
航测速度Speed | 2 m/s | |||
续航时间Flight time | 20 min | |||
传感器 Camera | MicaSense RedEdge-M | |||
图像分辨率 Imager resolution | 1280×960 pixels | |||
多光谱传感器 MicaSense RedEdge-M | 光谱波段 Spectral bands | 中心波长 Central wavelength | 波宽 Wavelength width | 灰板反射率 Reference reflectance |
蓝 Blue | 475 nm | 20 nm | 51.2 % | |
绿 Green | 560 nm | 20 nm | 51.2 % | |
红 Red | 668 nm | 10 nm | 51.2 % | |
近红外 Near infrared | 840 nm | 40 nm | 51.0 % | |
红边 Rededge | 717 nm | 10 nm | 51.1 % |
表2
本文采用的植被指数"
植被指数 Vegetation index | 计算公式 Formulas | 来源 References |
---|---|---|
NDVI (Normalized difference vegetation index) | NDVI =ρnir-ρr/ρnir+ρr | [ |
OSAVI (Optimize Soil-adjusted vegetation index) | OSAVI =(ρnir-ρr)/( ρnir+ρr+X) | [ |
EVI (Enhanced Vegetation Index) | EVI=2.5×(ρnir -ρr)/(ρnir +6×ρr -7.5×ρb +1) | [ |
NDRE(Normalized difference red edge index) | NDRE=(ρnir-ρre)/( ρnir +ρre) | [ |
表4
不同生育时期LAI估算模型建立与验证(n=60)"
生育时期 Growth stages | 植被指数 Vegetation index | 估算模型 | 验证模型 | |||
---|---|---|---|---|---|---|
估算方程 Equation | 决定系数 Determination coefficient R2 | 标准误差 Standard error SE | 相对误差 Relative error RE | 均方根误差 Root mean square error RMSE | ||
拔节期 Jointing | NDVI | Y=2.243x-0.178 | 0.520 | 0.121 | 9.58 | 0.117 |
OSAVI | Y=1.914x+0.493 | 0.666 | 0.026 | 8.57 | 0.104 | |
EVI | Y=1.627x+0.395 | 0.508 | 0.133 | 11.31 | 0.147 | |
NDRE | Y=2.395 x+0.164 | 0.549 | 0.089 | 10.46 | 0.134 | |
抽雄期 Tasseling | NDVI | Y=1.523x+1.751 | 0.697 | 0.079 | 10.84 | 0.114 |
OSAVI | Y=2.174x+0.953 | 0.667 | 0.121 | 9.79 | 0.093 | |
EVI | Y=2.336x+1.157 | 0.691 | 0.103 | 10.36 | 0.121 | |
NDRE | Y=5.241x+3.343 | 0.753 | 0.027 | 8.34 | 0.087 | |
成熟期Maturation | NDVI | Y=1.954x+0.247 | 0.661 | 0.141 | 13.41 | 0.133 |
OSAVI | Y=2.517x-0.314 | 0.684 | 0.106 | 10.53 | 0.141 | |
EVI | Y=1.983x+0.185 | 0.630 | 0.093 | 9.83 | 0.156 | |
NDRE | Y=5.711x-0.293 | 0.733 | 0.047 | 9.24 | 0.091 |
1 | Jefferies R A, Mackerron D K L. Responses of potato genotypes to drought. II. Leaf area index, growth and yield[J]. Annals of Applied Biology, 1993, 122(1): 105-112. |
2 | 李俐,许连香,王鹏新,等.基于叶面积指数的河北中部平原夏玉米单产预测研究[J].农业机械学报,2020,51(06):198-208. |
Li L, Xu L X, Wang P X, et al. Summer maize yield forecasting based on leaf area index[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10):230-239. | |
3 | Fu Y, Yang G, Wang J, et al. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements[J]. Computers and Electronics in Agriculture. 2014, 100: 51-59. |
4 | Verger A, Vigneau N, Cheron C, et al. Green area index from an unmanned aerial system over wheat and rapeseed crops [J]. Remote Sensing Environment, 2014, 152: 654-664. |
5 | Liang L, Di L, Zhang L, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method [J]. Remote Sensing Environment, 2015, 165: 123-134. |
6 | Walthall C, Dulaney W, Anderson M, et al. A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM imagery[J]. Remote Sensing of Environment, 2004, 92(4): 465-474. |
7 | Propastin P A. Spatial non-stationarity and scale-dependency of prediction accuracy in the remote estimation of LAI over a tropical rainforest in Sulawesi, Indonesia[J]. Remote Sensing of Environment, 2009, 113(10):2234-2242. |
8 | Frampton W J, Dash J, Warmouth G, et al. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82: 83-92. |
9 | 苏伟, 侯宁, 李琪, 等. 基于Sentinel-2 遥感影像的玉米冠层叶面积指数反演[J]. 农业机械学报, 2018, 49(1): 151-156. |
Su W, Hou N, Li Q, et al. Retrieving leaf area index of corn canopy based on sentinel-2 remote sensing image[J]. Transaction of the Chinese Society for Agricultural Machinery, 2018, 49(1): 151-156. | |
10 | 易秋香. 基于Sentinel-2 多光谱数据的棉花叶面积指数估算[J]. 农业工程学报, 2019, 35(16):189-197. |
Yi Q X. Remote estimation of cotton LAI using Sentinel-2 multispectral data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 189-197. | |
11 | 吾木提·艾山江, 买买提·沙吾提, 陈水森, 等. 基于GF-1/2卫星数据的冬小麦叶面积指数反演[J]. 作物学报, 2020, 46(5): 787-797. |
Umut H, Mamat S, Chen S, et al. Inversion of leaf area index of winter wheat based on GF-1/2 image[J]. Acta Agronomica Sinica, 2020, 46(5): 787-797. | |
12 | Alonzo M, Bookhagen B, Mcfadden J P, et al. Mapping urban forest leaf area index with airborne LiDAR using penetration metrics and allometry[J]. Remote Sensing of Environment, 2015, 162(1):141-153. |
13 | Zhang L Y, Zhang H H, Niu Y X, et al. Mapping maize water stress based on UAV multispectral remote sensing[J]. Remote Sensing, 2019, 11(6): 605. |
14 | Yu N, Li L J, Schmitza N, et al. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform[J]. Remote Sensing of Environment, 2016, 187(15): 91-101. |
15 | Bhardwaj A, Sam L, Akanksha A, et al. UAVs as Remote Sensing Platform in Glaciology: Present Applications and Future Prospects[J]. Remote Sensing of Environment, 2016, 175(15):196-204. |
16 | Niu Y X, Zhang L Y, Zhang H H, et al. Estimating Above-Ground Biomass of Maize Using Features Derived from UAV-Based RGB Imagery[J]. Remote Sensing, 2019, 11(11): 1261. |
17 | Guan K, Wu J, Kimball J S, et al. The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields[J]. Remote Sensing of Environment, 2017, 199: 333-349. |
18 | Roosjen P P J, Bbede B, Suomalainen J M, et al. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data-potential of unmanned aerial vehicle imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 66: 14-26. |
19 | Berni J A J, ZARCO-TEJADA P J, SUAREZ L, et al. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 722-738. |
20 | 刘峰, 刘素红, 向阳. 园地植被覆盖度的无人机遥感监测研究[J]. 农业机械学报, 2014, 45(11): 250-257. |
Liu F, Liu S H, Xiang Y. Study on monitoring fractional vegetation cover of garden plots by unmanned aerial vehicles[J]. Transactions of the Chinese Society for Agriculural Machinery, 2014, 45(11): 250-257. | |
21 | Corcoles J I, Ortega J F, Hernandez D, et al. Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle[J]. Biosystems Engineering, 2013, 115(1): 31-42. |
22 | Peter P J, Roosjen B B, Juha M, et al. Improved Estimation of Leaf Area Index and Leaf Chlorophyll Content of a Potato Crop using Multi-angle Spectral Data-Potential of Unmanned Aerial Vehicle Imagery[J]. International Journal of Applied Earth Observations and Geoinformation, 2017. |
23 | 孙涛, 刘振波, 葛云健, 等. 基于数码相片Gamma 校正的水稻叶面积指数估算[J]. 生态学报, 2014, 34(13):3548-3557. |
Sun T, Liu Z B, Ge Y J, et al. Estimation of paddy rice leaf area index based on photo gamma correction[J]. Acta Ecologica Sinica, 2014, 34(13): 3548-3557 | |
24 | 王瑛. 基于无人机遥感的小麦叶面积指数反演方法研究[D].杨凌: 西北农林科技大学, 2017: 28. |
Wang Y. Research on the inversion methods of wheat leaf area index based on unmanned aerial vehicle remote sensing[D]. Yangling: Northwest A&F University, 2017: 28. | |
25 | 褚洪亮, 肖青, 柏军华, 等. 基于无人机遥感的叶面积指数反演[J]. 遥感技术与应用, 2017, 31(01):140-148. |
Chu H L, Xiao Q, Bai J H, et al. The retrieval of leaf area index based on remote sensing by unmanned aerial vehicle[J]. Remote Sensing Technology and Application, 2017, 31(1): 140-148. | |
26 | 牛庆林, 冯海宽, 杨贵军, 等. 基于无人机数码影像的玉米育种材料株高和LAI监测[J].农业工程学报, 2018, 34(05): 73-82. |
Niu Q L, Feng H K, Yang G J, et al. Monitoring plant height and leaf area index of maize breeding material based on UAV digital images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 73-82. | |
27 | 孙诗睿, 赵艳玲, 王亚娟, 等. 基于无人机多光谱遥感的冬小麦叶面积指数反演[J].中国农业大学学报, 2019, 24(11):51-58. |
Sun S R, Zhao Y L, Wang Y J, et al. Leaf area index inversion of winter wheat based on multispectral remote sensing of UAV. Journal of China Agricultural University. 2019, 24(11):51-58. | |
28 | 高林, 杨贵军, 李红军, 等. 基于无人机数码影像的冬小麦叶面积指数探测研究[J].中国生态农业学报, 2016, 24(09):1254-1264. |
Gao L, Yang G J, Li H J, et al. Winter wheat LAI estimation using unmanned aerial vehicle RGB-imaging[J]. Chinese Journal of Eco-Agriculture, 2016, 24(09): 1254-1264. | |
29 | 高林, 杨贵军, 王宝山, 等. 基于无人机遥感影像的大豆叶面积指数反演研究[J].中国生态农业学报,2015,23(07):868-876. |
Gao L, Yang G J, Wang B S, et al. Soybean leaf area index retrieval with UAV (unmanned aerial vehicle) remote sensing imagery[J]. Chinese Journal of Eco-Agriculture, 2015,23(07):868-876. | |
30 | 刘良云.叶面积指数遥感尺度效应与尺度纠正[J].遥感学报, 2014, 18(6):1158-1168. |
Liu L Y. Simulation and correction of spatial scaling effects for leaf area index. Journal of Remote Sensing, 2014, 18(6): 1158 -1168. | |
31 | Rouse J W, Haas R H, Schell J A,et al. Monitoring vegetation systems in the Great Plains with ERTS[Z]. NASA Special Publication, 1974, 351: 309-313. |
32 | Rondeaux G, Steven M, Bare F. Op-timization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996, 55: 95-107. |
33 | Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25(3): 295-309. |
34 | Barnes E M, Clarke T R, Richards S E, et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In: Robert P C. Rust RH LarsonWE, eds., Proceedings of the 5th International Conference on Precision Agriculture, Bloomington. MN. USA. 2000, 7, 16-19. |
35 | 陈俊英, 陈硕博, 张智韬, 等. 无人机多光谱遥感反演花蕾期棉花光合参数研究[J].农业机械学报, 2018, 49(10):230-239. |
Chen J Y, Chen S B, Zhang Z T, et al. Investigation on Photosynthetic Parameters of Cotton during Budding Period by Multi-spectral Remote Sensing of Unmanned Aerial Vehicle [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10):230-239. | |
36 | 杨海波, 高兴, 黄绍福, 等. 基于卫星波段的马铃薯植株氮素含量估测[J].光谱学与光谱分析, 2019, 39(09):2686-2692. |
Yang H B, Gao X, Huang S F, et al. Staellite bands based estimation of nitrogen concentration in potato plants[J]. Spectroscopy and Spectral Analysis, 2019, 39(09):2686-2692. |
[1] | 兰宏亮, 裴志超, 郎书文, 周继华, 佟国香, 罗军, 解春源. 北京地区优质甜玉米品种筛选试验[J]. 农业大数据学报, 2023, 0(4): 35-37. |
[2] | 杨珍, 赵军, 张德, 张树庚. 干旱对不同基因型玉米种子产量 和产量构成因素的影响研究[J]. 农业大数据学报, 2023, 0(4): 38-41. |
[3] | 王文文, 郭海斌. 种植密度对不同玉米品种 生长特性及产量的影响[J]. 农业大数据学报, 2023, 0(4): 45-44. |
[4] | 陈永欣, 范瑞, 翟广谦, 董立红, 邢磊, 李文和, 阮副林. 国审黑色糯玉米品种 晋糯20号的选育及推广应用[J]. 农业大数据学报, 2023, 0(4): 160-164. |
[5] | 韩业辉, 马宝新, 刘海燕, 孙善文, 王俊强, 于运凯, 许健, 周超, 徐婷, 丁昕颖. 抗病宜机收玉米新品种嫩单37的选育及高产栽培技术[J]. 农业大数据学报, 2023, 0(4): 169-168. |
[6] | 刘婕. 山东德州地区玉米大豆 带状复合种植高产高效栽培技术[J]. 农业大数据学报, 2023, 0(4): 192-194. |
[7] | 江明山, 李新燕, 邹传桃, 田志富, 冯宝丰. 黄甜玉米新品种斯达甜221的 选育及栽培技术[J]. 农业大数据学报, 2023, 0(4): 197-199. |
[8] | 胡天赐, 王瑞利, 蒋呈祥, 白涛, 胡林, 王晓丽, 郭雷风. 2022年内蒙古无人机马铃薯图像数据集[J]. 农业大数据学报, 2023, 5(1): 40-45. |
[9] | 张兆旭, 肖月, 苟文涛, 崔津. 基于日光诱导叶绿素荧光遥感的河南省干旱监测与时空变化研究[J]. 农业大数据学报, 2023, 5(1): 76-86. |
[10] | 张兆旭, 崔津, 苟文涛, 肖月. 基于温度植被干旱指数的华北平原干旱监测及时空变化分析[J]. 农业大数据学报, 2023, 5(1): 95-107. |
[11] | 周淑香, 李小宇, 高芃, 高月波, 苏前富, 赫思聪. 2019—2021年吉林省公主岭市玉米田瓢虫数据集[J]. 农业大数据学报, 2022, 4(4): 33-38. |
[12] | 刘兴龙, 王宇, 王晓曦, 王克勤. 2018—2021年黑龙江省哈尔滨农田瓢虫数据集[J]. 农业大数据学报, 2022, 4(4): 39-44. |
[13] | 阿依吐拉·买买提祖农null, 帅艳菊, 魏浩东, 何真, 肖沁茜, 胡琼, 徐保东, 游良志, 曹凑贵, 凌霖. 基于遥感识别与DNDC模型的不同稻作模式评价——以潜江市为例[J]. 农业大数据学报, 2021, 3(3): 33-44. |
[14] | 袁培森, 薛铭家, 熊迎军, 翟肇裕, 徐焕良. 基于无人机高通量植物表型大数据分析及应用研究综述[J]. 农业大数据学报, 2021, 3(3): 62-75. |
[15] | 李强, 高懋芳, 方莹. 农业大数据信息平台构建方法初探[J]. 农业大数据学报, 2021, 3(2): 24-30. |
|