农业大数据学报 ›› 2023, Vol. 5 ›› Issue (2): 2-8.doi: 10.19788/j.issn.2096-6369.230202

• “共享杯”农业科学专业赛优秀作品 • 上一篇    下一篇

东北三省2020-2022年间10 m空间分辨率耕地资源空间分布数据集

申格1(), 刘航2, 李丹丹3, 陈实4, 邹金秋3,*()   

  1. 1.浙江财经大学土地与城乡发展研究院,杭州 310018
    2.浙江财经大学东方学院,浙江 嘉兴 314408
    3.中国农业科学院农业资源与农业区划研究所,北京 100081
    4.池州学院地理与规划学院,安徽 池州 247000
  • 收稿日期:2023-06-06 出版日期:2023-06-26 发布日期:2023-08-15
  • 通讯作者: 邹金秋
  • 作者简介:申格,博士,助理研究员,研究方向:农业遥感及农业土地系统可持续;E-mail:shenge@zufe.edu.cn
  • 基金资助:
    国家重点研发计划课题(2022YFF0711803);浙江省自然科学基金(LQ23D010001)

A 10 m Spatial Resolution Dataset for the Spatial Distribution of Cropland Resources in the Three Northeastern Provinces from 2020 to 2022

SHEN Ge1(), LIU Hang2, LI DanDan3, CHEN Shi4, ZOU JinQiu3,*()   

  1. 1. Institute of Land and Urban-Rural Development, Zhejiang University of Finance and Economics, Hangzhou 310018, China
    2. Dongfang College, Zhejiang University of Finance and Economics, Jiaxing 314408, Zhejiang, China
    3. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    4. School of Geography and Planning, Chizhou University, Chizhou 247000, Anhui, China
  • Received:2023-06-06 Online:2023-06-26 Published:2023-08-15
  • Contact: ZOU JinQiu

摘要:

及时准确地获取耕地空间分布数据对于农业生产管理、种植结构调整、保障粮食安全等具有重要意义。本研究以东北三省(黑龙江省、辽宁省、吉林省)为研究区,基于哨兵二号(Sentinel-2)卫星影像数据,建立每一省份特定年份的耕地与非耕地样本12个月份的归一化差分植被指数(NDVI)数据集库;利用Google Earth Engine遥感计算平台,依据耕地与非耕地样本的NDVI的差异性特征进行监督分类,建立了黑龙江省、辽宁省、吉林省等东北三省2020—2022年间逐年10 m空间分辨率耕地资源空间分布数据集。该数据集为东北地区最近年份的耕地资源空间分布数据集更新,可为该地区的黑土地科学保护、“藏粮于地,藏粮于技”战略实施以及粮食安全保障提供数据支撑和科学服务。

关键词: 耕地资源, 遥感, Sentinel-2, Google Earth Engine

Abstract:

Timely and accurate acquisition of cropland spatial distribution data is of great significance for agricultural production management, planting structure adjustment and food security. In this study, three northeastern provinces (Heilongjiang, Liaoning and Jilin) were selected as the research area. Based on massive Sentinel-2 data, a 12-month Normalized Difference Vegetation Index (NDVI) dataset of cropland and non-cropland samples in a specific year was established in each province. The Google Earth Engine remote sensing computing platform was used to conduct supervised classification according to the difference characteristics of NDVI between cropland and non-cropland samples, and the spatial distribution data set of cropland resources with 10 m spatial resolution in the three northeastern provinces during 2020-2022 was obtained. The data set is an update of the latest available cropland resource data set, which can provide data support and scientific services for the scientific protection of phaeozem in Northeast China, the implementation of the strategy of "storing grain in land, storing grain in technology" and the guarantee of food security.

Key words: cropland, remote sensing, Sentinel-2, Google Earth Engine