[1] |
ARNAL BARBEDO J G. Digital image processing techniques for detecting, quantifying and classifying plant diseases[J/OL]. SpringerPlus, 2013, 2(1): 660 [2023-08-29]. https://doi.org/10.1186/2193-1801-2-660.
|
[2] |
LOWE D G. Distinctive Image Features from Scale-Invariant Keypoints[J/OL]. International Journal of Computer Vision, 2004, 60(2): 91-110 [2023-08-28]. http://link.springer.com/10.1023/B:VISI.0000029664.99615.94.
|
[3] |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C/OL]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05): 2005: 886-893. https://doi.org/10.1109/CVPR.2005.177.
|
[4] |
BAY H, ESS A, TUYTELAARS T, et al. Speeded-Up Robust Features (SURF)[J/OL]. Computer Vision and Image Understanding, 2008, 110(3): 346-359[2023-08-28]. https://linkinghub.elsevier.com/retrieve/pii/S1077314207001555.
|
[5] |
COVER T, HART P. Nearest neighbor pattern classification[J/OL]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27. https://doi.org/10.1109/TIT.1967.1053964.
doi: 10.1109/TIT.1967.1053964
|
[6] |
CORTES C, VAPNIK V. Support-vector networks[J/OL]. Machine Learning, 1995, 20(3): 273-297[2023-08-29]. https://doi.org/10.1007/BF00994018.
|
[7] |
MOHANTY S P, HUGHES D P, SALATHÉ M. Using Deep Learning for Image-Based Plant Disease Detection[J/OL]. Frontiers in Plant Science, 2016, 7[2023-08-28]. https://www.readcube.com/articles/10.3389%2Ffpls.2016.01419.
|
[8] |
LU Y, YI S, ZENG N, et al. Identification of rice diseases using deep convolutional neural networks[J/OL]. Neurocomputing, 2017, 267: 378-384[2023-08-28]. https://linkinghub.elsevier.com/retrieve/pii/S0925231217311384.
|
[9] |
LIU Z, GAO J, YANG G, et al. Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network[J/OL]. Scientific Reports, 2016, 6(1): 20410[2023-08-28]. https://www.nature.com/articles/srep20410.
|
[10] |
庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报. 2015, 26(1): 26−39.
|
[11] |
PAN S J, YANG Q. A Survey on Transfer Learning[J/OL]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. https://doi.org/10.1109/TKDE.2009.191.
doi: 10.1109/TKDE.2009.191
|
[12] |
SAMANTA S, TIRUMARAI SELVAN A, DAS S. Cross-domain clustering performed by transfer of knowledge across domains[C/OL]// 2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG). 2013: 1-4. https://doi.org/10.1109/NCVPRIPG.2013.6776213.
|
[13] |
WANG J, KE L. Feature subspace transfer for collaborative filtering[J/OL]. Neurocomputing, 2014, 136: 1-6[2023-08-29]. https://linkinghub.elsevier.com/retrieve/pii/S0925231214002446.
|
[14] |
HUA J, WANG H, KANG M, et al. The design and implementation of a distributed agricultural service system for smallholder farmers in China[J/OL]. International Journal of Agricultural Sustainability, 2023, 21(1): 2221108[2023-09-07]. https://www.tandfonline.com/doi/full/10.1080/14735903.2023.2221108.
|
[15] |
HUA J, WANG H, KANG M, et al. The design and implementation of a distributed agricultural service system for smallholder farmers in China[J/OL]. International Journal of Agricultural Sustainability, 2023, 21(1): 2221108[2023-09-07]. https://www.tandfonline.com/doi/full/10.1080/14735903.2023.2221108.
|
[16] |
KANG M, WANG X, WANG H, et al. The Development of AgriVerse: Past, Present, and Future[J/OL]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(6): 3718-3727. https://doi.org/10.1109/TSMC.2022.3230830.
doi: 10.1109/TSMC.2022.3230830
|
[17] |
WANG X, KANG M, SUN H, et al. DeCASA in AgriVerse: Parallel Agriculture for Smart Villages in Metaverses[J/OL]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(12): 2055-2062. https://doi.org/10.1109/JAS.2022.106103.
|
[18] |
康孟珍, 王秀娟, 李冬, 等. 基于联邦学习的分布式农业组织[J]. 智能科学与技术学报, 2022, 4(2): 288-297.
doi: 10.11959/j.issn.2096-6652.202231
|
[19] |
PRAJAPATI H B, SHAH J P, DABHI V K. Detection and classification of rice plant diseases[J/OL]. Intelligent Decision Technologies, 2017, 11(3): 357-373[2023-09-21]. https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDT-170301.
|
[20] |
王忠培, 张萌, 董伟, 等. 基于迁移学习的多模型水稻病害识别方法研究[J]. 安徽农业科学, 2021, 49(20):236-242.
|
[21] |
TAKAHASHI R, MATSUBARA T, UEHARA K. Data Augmentation using Random Image Cropping and Patching for Deep CNNs[J/OL]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(9): 2917-2931[2023-08-29]. http://arxiv.org/abs/1811.09030.
doi: 10.1109/TCSVT.76
|
[22] |
BJERRUM E J, GLAHDER M, SKOV T. Data Augmentation of Spectral Data for Convolutional Neural Network (CNN) Based Deep Chemometrics[M/OL]. arXiv, 2017[2023-08-29]. http://arxiv.org/abs/1710.01927.
|
[23] |
HAN D, LIU Q, FAN W. A new image classification method using CNN transfer learning and web data augmentation[J/OL]. Expert Systems with Applications, 2018, 95: 43-56[2023-08-29]. https://linkinghub.elsevier.com/retrieve/pii/S0957417417307844.
|
[24] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet Classification with Deep Convolutional Neural Networks[C/OL]// Advances in Neural Information Processing Systems: 卷 25. Curran Associates, Inc., 2012[2023-08-29]. https://proceedings.neurips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.
|
[25] |
SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[M/OL]. arXiv, 2015[2023-08-29]. http://arxiv.org/abs/1409.1556.
|
[26] |
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[M/OL]. arXiv, 2015[2023-08-29]. http://arxiv.org/abs/1512.03385.
|
[27] |
SZEGEDY C, LIU W, JIA Y, et al. Going Deeper with Convolutions[M/OL]. arXiv, 2014[2023-08-29]. http://arxiv.org/abs/1409.4842.
|
[28] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for Computer Vision[M/OL]. arXiv, 2015 [2023-08-29]. http://arxiv.org/abs/1512.00567.
|
[29] |
ESI NYARKO B N, BIN W, ZHOU J, et al. Comparative Analysis of AlexNet, Resnet-50, and Inception-V3 Models on Masked Face Recognition[C/OL]//2022 IEEE World AI IoT Congress (AIIoT). 2022: 337-343. https://doi.org/10.1109/AIIoT54504.2022.9817327.
|
[30] |
BARBEDO J G A. Factors influencing the use of deep learning for plant disease recognition[J/OL]. Biosystems Engineering, 2018, 172: 84-91[2023-08-29]. https://linkinghub.elsevier.com/retrieve/pii/S1537511018303027.
|
[31] |
LIU Q, JIANG Y. Dive into Big Model Training[M/OL]. arXiv, 2022[2023-08-29]. http://arxiv.org/abs/2207.11912.
|
[32] |
KAPLAN J, MCCANDLISH S, HENIGHAN T, et al. Scaling Laws for Neural Language Models[M/OL]. arXiv, 2020[2023-08-29]. http://arxiv.org/abs/2001.08361.
|
[33] |
NARAYANAN D, SHOEYBI M, CASPER J, et al. Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM[M/OL]. arXiv, 2021[2023-08-29]. http://arxiv.org/abs/2104.04473.
|
[34] |
SHELLER M J, EDWARDS B, REINA G A, et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data[J/OL]. Scientific Reports, 2020, 10(1): 12598[2023-08-29]. https://www.nature.com/articles/s41598-020-69250-1.
|
[35] |
MAMMEN P M. Federated Learning: Opportunities and Challenges[M/OL]. arXiv, 2021[2023-08-29]. http://arxiv.org/abs/2101.05428.
|
[36] |
NGUYEN T V, DAKKA M A, DIAKIW S M, et al. A novel decentralized federated learning approach to train on globally distributed, poor quality, and protected private medical data[J/OL]. Scientific Reports, 2022, 12(1): 8888[2023-08-29]. https://www.nature.com/articles/s41598-022-12833-x.
|
[37] |
BONAWITZ K, IVANOV V, KREUTER B, et al. Practical Secure Aggregation for Federated Learning on User-Held Data[M/OL]. arXiv, 2016[2023-08-29]. http://arxiv.org/abs/1611.04482.
|
[38] |
MOTHUKURI V, PARIZI R M, POURIYEH S, et al. A survey on security and privacy of federated learning[J/OL]. Future Generation Computer Systems, 2021, 115: 619-640[2023-08-29]. https://www.sciencedirect.com/science/article/pii/S0167739X20329848.
|
[39] |
吴超, 郁建兴. 面向公共管理的数据所有权保护, 定价和分布式应用机制探讨[J]. 电子政务, 2020 (1): 29-38.
|
[40] |
DENHARDT R B, DENHARDT J V. The New Public Service: Serving Rather than Steering[J/OL]. Public Administration Review, 2000, 60(6): 549-559[2023-09-15]. https://onlinelibrary.wiley.com/doi/10.1111/0033-3352.00117.
|
[41] |
bitcoin-zh-cn.pdf[EB/OL]. [2023-09-12]. https://nakamotoinstitute.org/static/docs/bitcoin-zh-cn.pdf.
|
[42] |
IUON-CHANG LIN, TZU-CHUN LIAO. A survey of blockchain security issues and challenges[J/OL]. International Journal of Network Security, 2017, 19(5). https://doi.org/10.6633/IJNS.201709.19(5).01.
|
[43] |
袁勇, 王飞跃. 区块链技术发展现状与展望[J]. 自动化学报, 2016, 42(4): 481-494.
|
[44] |
KIM H, PARK J, BENNIS M, et al. Blockchained On-Device Federated Learning[M/OL]. arXiv, 2019[2023-09-15]. http://arxiv.org/abs/1808.03949.
|
[45] |
ZYSKIND G, NATHAN O,PENTLAND A “Sandy”. Decentralizing Privacy: Using Blockchain to Protect Personal Data[C/OL]// 2015 IEEE Security and Privacy Workshops. 2015: 180-184. https://doi.org/10.1109/SPW.2015.27.
|
[46] |
WANG S, DING W, LI J, et al. Decentralized autonomous organizations: Concept, model, and applications[J/OL]. IEEE Transactions on Computational Social Systems, 2019, 6(5): 870-878 [2023-03-31]. https://ieeexplore.ieee.org/document/8836488/.
doi: 10.1109/TCSS.6570650
|
[47] |
DING W, HOU J, LI J, et al. DeSci Based on Web3 and DAO: A comprehensive overview and reference model[J/OL]. IEEE Transactions on Computational Social Systems, 2022, 9(5): 1563-1573[2023-03-31]. https://ieeexplore.ieee.org/document/9906878/.
doi: 10.1109/TCSS.2022.3204745
|
[48] |
DING W W, LIANG X, HOU J, et al. Parallel Governance for Decentralized Autonomous Organizations enabled by Blockchain and Smart Contracts[C/OL]// 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). Beijing, China: IEEE, 2021: 1-4[2023-03-31]. https://ieeexplore.ieee.org/document/9540069/.
|
[49] |
HOU J, DING W, LIANG X, et al. A Study on Decentralized Autonomous Organizations Based Intelligent Transportation System enabled by Blockchain and Smart Contract[C/OL]// 2021 China Automation Congress (CAC). Beijing, China: IEEE, 2021: 967-971 [2023-03-31]. https://ieeexplore.ieee.org/document/9727429/.
|
[50] |
CAO Y, LI S, LIU Y, et al. A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT[M/OL]. arXiv, 2023[2023-08-29]. http://arxiv.org/abs/2303.04226.
|
[51] |
WANG D, WANG J, LI W, et al. T-CNN: Trilinear convolutional neural networks model for visual detection of plant diseases[J]. Computers and Electronics in Agriculture, 2021, 190: 106468.
doi: 10.1016/j.compag.2021.106468
|
[52] |
Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning[EB/OL]. [2023-08-29]. https://apsjournals.apsnet.org/doi/epdf/10.1094/PHYTO-11-16-0417-R.
|
[53] |
AGARWAL M, SINHA A, GUPTA S Kr, et al. Potato Crop Disease Classification Using Convolutional Neural Network[C/OL]//SOMANI A K, SHEKHAWAT R S, MUNDRA A, et al. Smart Systems and IoT: Innovations in Computing. Singapore: Springer, 2020: 391-400. https://doi.org/10.1007/978-981-13-8406-6_37.
|
[54] |
WANG Y F, KANG M Z, LIU Y L, et al. Can digital intelligence and cyber physical social systems achieve global food security and sustainability?[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(11): 2070-2080.
doi: 10.1109/JAS.2023.123951
|