农业大数据学报 ›› 2025, Vol. 7 ›› Issue (2): 220-226.doi: 10.19788/j.issn.2096-6369.100051

• 数据资源 • 上一篇    下一篇

作物性状调控基因知识图谱数据集

张丹丹1,2(), 赵瑞雪1,2,*(), 宼远涛1,2,*(), 鲜国建1,3   

  1. 1.中国农业科学院农业信息研究所,北京 100081
    2.农业融合出版知识挖掘与知识服务重点实验室, 北京 100081
    3.农业农村部农业大数据重点实验室,北京 100081
  • 收稿日期:2024-12-07 接受日期:2025-01-08 出版日期:2025-06-26 发布日期:2025-06-23
  • 通讯作者: 赵瑞雪,E-mail: zhaoruixue@caas.cn
    宼远涛,E-mail: kouyuantao@caas.cn
  • 作者简介:张丹丹,E-mail: zhangdandan01@caas.cn
  • 基金资助:
    中国农业科学院科技创新工程(CAAS-ASTIP-2016-AII)

Crop Trait Regulating-genes Knowledge Graph Datasets

ZHANG DanDan1,2(), ZHAO RuiXue1,2,*(), KOU YuanTao1,2,*(), XIAN GuoJian1,3   

  1. 1. Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing 100081
    2. Agricultural Integrated Publishing Knowledge Mining and Knowledge Service Key Laboratory, Beijing 100081
    3. Key Laboratory of Agricultural Big Data, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2024-12-07 Accepted:2025-01-08 Published:2025-06-26 Online:2025-06-23

摘要:

当前,作物育种相关的多维度科学数据呈指数级增长,这些半结构化和结构化的科学数据分布在不同领域科学数据库中,缺少跨物种多维度科学数据的关联融合数据集,阻碍了已有作物育种知识的迁移复用与作物育种科学数据价值的最大化发挥,这为作物性状调控基因知识发现带来了挑战。本研究基于数据的可靠性、实用性、易用性等原则,选取PubMed文献数据库与Phytozome、Ensembl plants、UniProt、RGAP、STRING、Pfam、KEGG和GO作为数据获取来源,采用多路径知识抽取的方式对不同数据格式的科学数据分别进行实体及关系的抽取。面向结构化数据的映射知识抽取;面向XML半结构化数据,采用基于Kettle进行数据解析的知识抽取;面向FASTA半结构化数据,采用基于BLAST模型计算的知识抽取。面向Text非结构化数据,采用基于大语言模型的知识抽取。在完成以上实体和关系抽取的基础上,进一步基于实体映射和特定属性关联的方式,实现多源作物育种知识的关联融合。形成了作物性状调控基因知识图谱数据集,并以.csv格式存储为结构化数据。该数据集包含13个实体数据集和14个语义关系数据集。为了验证该数据集的有效性,采用Neo4j图数据库进行数据集存储。最终,形成了涵盖约13万个节点和55万条语义关系的作物性状调控基因知识图谱,可有效支撑跨物种基因知识的关联检索。作物性状调控基因知识图谱数据集已为优异多效基因发现、跨物种基因功能预测与通路基因网络潜在发现等作物育种知识发现提供了关键的语义模型和重要的数据基础。相关科研和生产单位可基于本数据集构建作物性状调控基因知识库,为作物育种知识发现服务平台的构建提供关键的知识资源底座。

数据摘要:

项目 描述
数据集名称 作物性状调控基因知识图谱数据集
所属学科 农学其他学科(21099)
研究主题 作物;性状调控基因知识图谱;数据挖掘
数据类型与技术格式 .csv
数据库(集)组成 27个表格文件,包含水稻、玉米、小麦、拟南芥跨物种关联融合的13个实体数据集与14个语义关系数据集。
数据量 32.18 MB
主要数据指标 转录组名称、功能描述、物理位置、物种等
数据可用性 CSTR: 17058.11.sciencedb.agriculture.00175; https://cstr.cn/17058.11.sciencedb.agriculture.00175
DOI: 10.57760/sciencedb.agriculture.00175; https://doi.org/10.57760/sciencedb.agriculture.00175
经费支持 中国农业科学院科技创新工程(CAAS-ASTIP-2016-AII)

关键词: 作物, 知识图谱, 育种知识发现, 优异多效基因

Abstract:

As the cornerstone of ensuring national food security and the effective supply of important agricultural products, the seed industry has always been the direction of breeders' efforts to cultivate new crop varieties with the aggregation of a variety of excellent traits. Therefore, the excavation of pleiotropic genes that regulate multiple excellent traits such as drought resistance and disease resistance will effectively contribute to the scientific research of crop breeding. At present, with the accelerated application of information technology in the field of crop breeding, the multi-dimensional scientific data related to crop breeding has increased exponentially. These semi-structured and structured scientific data are distributed in scientific databases in different fields, and there is a lack of cross-species and multi-dimensional scientific data correlation and fusion datasets, which hinders the migration and reuse of existing crop breeding knowledge and maximizes the value of crop breeding scientific data, which brings challenges to the discovery of crop trait regulation gene knowledge. Based on the reliability, practicability, and ease of use of the data, PubMed literature database, Phytozome, Ensembl plants, UniProt, RGAP, STRING, Pfam, KEGG and GO were selected as the data acquisition sources, and the entities and relationships of scientific data in different data formats were extracted by multi-path knowledge extraction. It is mainly oriented to the mapping knowledge extraction of structured data; For XML semi-structured data, knowledge extraction based on Kettle data analysis is adopted. For FASTA semi-structured data, knowledge extraction based on BLAST model is adopted. For Text unstructured data, knowledge extraction based on large language models is adopted. On the basis of the above entity and relationship extraction, the association and integration of multi-source crop breeding knowledge were further realized based on the entity mapping and specific attribute association. Finally, a knowledge graph dataset of crop trait regulatory genes was formed, which was stored as structured data in.csv format. The dataset consists of 13 entity datasets and 14 semantic relationship datasets. In order to verify the validity of the dataset, the Neo4j graph database was used for dataset storage. Finally, a knowledge graph of crop trait regulatory genes covering 130,000 nodes and 550,000 semantic relationships was formed, which could effectively support the association retrieval of cross-species gene knowledge. The knowledge graph dataset of crop trait regulatory genes has provided a key semantic model and an important data basis for the discovery of crop breeding knowledge such as excellent pleiotropic gene discovery, cross-species gene function prediction and pathway gene network potential discovery. Based on this dataset, relevant scientific research and production units can construct a knowledge base of crop trait regulatory genes, which provides a key knowledge resource base for the construction of a crop breeding knowledge discovery service platform.

Data summary:

Items Description
Dataset name Crop Trait Regulating-genes Knowledge Graph Datasets
Specific subject area Other disciplines of agriculture
Research topic Crops; trait-regalating gene knowledge graph; data mining
Data types and technical formats .csv
Dataset structure This dataset is a 27-table file, contains 13 entity datasets and 14 semantic relationship datasets across rice, maize, wheat, and Arabidopsis thaliana.
Volume of dataset 32.18 MB
Key index in dataset Transcriptome name, functional description, physical location, species, etc.
Data accessibility CSTR: 17058.11.sciencedb.agriculture.00175; https://cstr.cn/17058.11.sciencedb.agriculture.00175
DOI: 10.57760/sciencedb.agriculture.00175; https://doi.org/10.57760/sciencedb.agriculture.00175
Financial support Chinese Academy of Agricultural Sciences Science and Technology Innovation Project (CAAS-ASTIP-2016-AII)

Key words: crops, knowledge graph, crop breeding knowledge discovery, elite polyphenotype genes