农业大数据学报 ›› 2025, Vol. 7 ›› Issue (4): 468-484.doi: 10.19788/j.issn.2096-6369.000130

• 数据应用 • 上一篇    下一篇

农业农村数据融合服务平台的设计与应用实践

哈晓琳1(), 李杰2,*(), 原育慧1, 张子怡1, 梁敏燕2   

  1. 1.农业农村部大数据发展中心北京 100125
    2.北京易华录信息技术股份有限公司北京 100043
    3.清华大学社会科学学院北京 100083
  • 收稿日期:2025-08-22 修回日期:2025-10-09 出版日期:2025-12-26 发布日期:2025-12-26
  • 通讯作者: 李杰,Email:lij04@ehualu.com
  • 作者简介:哈晓琳,Email:haxl@agri.gov.cn
  • 基金资助:
    2024年北京市博士后科研活动经费资助项目“面向场景驱动的农业数据银行动态机制及应用研究”(2024-ZZ-105)

Research on the Architecture and Key Technologies of Agricultural and Rural Data Fusion Service Platforms

HA XiaoLin1(), LI Jie2,*(), YUAN YuHui1, ZHANG ZiYi1, LIANG MinYan2   

  1. 1. Big Data Development Center, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Beijing 100125, China
    2. Beijing Yihualu Information Technology Co., Ltd, University, 100043, China
    3. School of Social Sciences, Tsinghua University, Beijing 100083, China
  • Received:2025-08-22 Revised:2025-10-09 Published:2025-12-26 Online:2025-12-26

摘要:

随着数字乡村战略的深入推进,农业农村领域对数据资源的集成共享、业务协同和智能服务提出了更高要求。本文针对农业农村数据资源汇聚与服务需求,提出了一种基于Hadoop的农业农村数据融合服务平台设计方案,创新性地构建了一种“云—边—端”+集中管理区的混合部署平台模型及其关键技术方案。平台依托“区块链+隐私计算”等先进的隐私保护与数据安全技术,打造支撑农业农村数据要素价值实现的技术基础,面向农业农村数据要素价值化需求,提供覆盖数据采集、治理、融合、应用全生命周期的管理能力与融通服务。平台目前已汇聚超过30个类别的农业农村数据,总量约500GB,涵盖生产、管理、服务等多个维度。围绕平台架构、部署架构、关键技术及应用场景展开研究,搭建农业农村现代化的数据融合服务平台,探索解决农业数据权属清晰、价值认定明确、交易过程可信的难点问题。利用大数据技术体系,促进涉农数据要素的流通共享、价值深度挖掘与资产高效转化。在典型查询场景下,平台实现了多维度数据检索平均响应延迟低于100毫秒的性能表现。平台能够显著提升交易过程的数据安全性与全链路可追溯性,有效解决海量农业农村数据在性能、容量与多用途支持上的不足问题,同时为跨部门政务协同与数据共享提供标准化范式,加速农业农村数据要素市场培育,赋能乡村数字经济高质量发展。

关键词: 农业农村大数据, 混合云架构, 云边端协同, 数据资源池, Hadoop, 农业数据要素

Abstract:

With the advancement of the digital rural strategy, the agricultural and rural sectors are increasingly demanding data resource integration, business collaboration, and intelligent services. This paper proposes a design scheme for an agricultural and rural data fusion service platform based on Hadoop, emphasizing the aggregation and service needs of agricultural and rural data resources. It indicatively constructs a hybrid deployment platform model that combines "cloud-edge-end" with centralized management areas and its key technical solutions. The platform relies on advanced privacy protection and data security technologies, such as "blockchain + privacy computation," to build the technical foundation that supports the value realization of agricultural and rural data elements. It provides management capabilities and integrated services throughout the entire life cycle of data collection, governance, fusion, and application, targeting the value-added needs of agricultural and rural data elements. The platform has aggregated over 30 categories of agricultural and rural data, totaling approximately 500GB, covering multiple dimensions such as production, management, and services. Research has been conducted around the platform architecture, deployment architecture, key technologies, and application scenarios to build a data fusion service platform for agricultural and rural modernization. This explores solutions to challenges such as clear ownership of agricultural data, unambiguous value recognition, and trustworthy transaction processes. Leveraging the big data technology system, it promotes the circulation and sharing of agricultural data elements, deep value mining, and efficient asset transformation. In typical query scenarios, the platform achieves a performance of average response latency below 100 milliseconds for multi-dimensional data retrieval. The platform significantly enhances data security and full-chain traceability during the transaction process, effectively addressing the deficiencies in performance, capacity, and multi-purpose support of massive agricultural and rural data. It also provides a standardized paradigm for cross-departmental government collaboration and data sharing, accelerates the cultivation of the agricultural and rural data element market, and empowers the high-quality development of the rural digital economy.

Key words: agricultural and rural big data, hybrid cloud architecture, cloud edge collaboration, data resource pool, Hadoop, agricultural data elements