农业大数据学报 ›› 2025, Vol. 7 ›› Issue (4): 485-495.doi: 10.19788/j.issn.2096-6369.000136

• 数据管理 • 上一篇    下一篇

科学数据视角下AlphaFold的迭代突破与数据策略启示

欧阳峥峥1,2(), 马毓聪2,*(), 寇远涛1,3,*(), 鲜国建1, 王辉4,5, 赵群1   

  1. 1.中国农业科学院农业信息研究所北京 100081
    2.中国科学院成都文献情报中心成都 610299
    3.农业融合出版知识挖掘与知识服务重点实验室北京 100081
    4.中国科学院文献情报中心北京 100190
    5.中国科学院大学经济管理学院信息资源管理系北京 100190
  • 收稿日期:2025-10-14 修回日期:2025-11-09 出版日期:2025-12-26 发布日期:2025-12-26
  • 通讯作者: 马毓聪,Email:mayc@clas.ac.cn
    寇远涛,Email:kouyuantao@caas.cn
  • 作者简介:欧阳峥峥,Email:oyzz@clas.ac.cn
  • 基金资助:
    2024年度国家新闻出版署农业融合出版知识挖掘与知识服务重点实验室开放课题基金资助项目(2024KMKS05);中国科学院成都文献情报中心2023年度创新基金重点项目(E3Z0000901)

Unveiling AlphaFold’s Iterative Breakthroughs: Data Strategy Insights from a Scientific Perspective

OUYANG ZhengZheng1,2(), MA YuCong2,*(), KOU YuanTao1,3,*(), XIAN GuoJian1, WANG Hui4,5, ZHAO Qun1   

  1. 1. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2. National Science Library (Chengdu), Chinese Academy of Sciences, Chengdu 610299, China
    3. Key Laboratory of Knowledge Mining and Knowledge Services in Agricultural Converging Publishing, Beijing 100081, China
    4. National Science Library, Chinese Academy of Sciences, Beijing 100190, China
    5. Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
  • Received:2025-10-14 Revised:2025-11-09 Published:2025-12-26 Online:2025-12-26

摘要:

AlphaFold系列模型在结构生物学领域的革命性突破常被归因于算法创新,但其背后更为根本的科学数据策略演进却鲜有系统性剖析。本文从科学数据的核心视角出发,系统解构AlphaFold 1至3代的迭代突破机制,聚焦数据内在属性优化、表征范式革新、数据-模型协同适配三大关键层面,论证模型每一次性能跃升的本质均是数据-模型协同进化的结果。研究揭示:AlphaFold的演进是其数据策略从被动沿用、主动构建到生成赋能的历程。基于此,本文提炼出三大核心规律:表征范式的跃迁是突破的核心驱动,数据-模型的协同演进是成熟的关键标志,而数据内在属性的丰富度则决定了AI学习范式的上限。这些规律为AI for Science(AI4S)领域带来四大关键启示:数据工作需从被动准备转向主动设计;研发应从“模型/数据中心”转向以“契合度”为中心;数据体系构建应靶向提升核心属性而非盲目多模态聚合;业界亟待构建一套衡量数据“科学效能”的全新理论与评估框架,为AI驱动的科学发现提供理论支撑与路径参考。

关键词: AlphaFold, 科学数据, 数据-模型协同, 蛋白质结构预测, AI驱动科学发现

Abstract:

The transformative breakthroughs of the AlphaFold series in structural biology are often attributed to algorithmic advances, yet the critical role of its evolving data strategy remains underexplored. Adopting a data-centric perspective, this paper deconstructs the iterative mechanisms driving AlphaFold’s progress from versions 1 to 3, emphasizing the optimization of data quality attributes, innovations in representation paradigms, and data-model synergy. The analysis reveals that each performance leap stems from the co-evolution of data and model architectures. AlphaFold’s data strategy follows a clear trajectory: from passive data adoption, to proactive data construction, and finally to generative data augmentation. From this, three core principles emerge: paradigm shifts in data representation are the primary drivers of breakthroughs; data-model co-evolution is a hallmark of system maturity; and the richness of data quality attributes sets the ceiling for an AI’s learning potential. These principles yield four implications for the AI for Science (AI4S) field: data practices should shift from passive preparation to active design; research should prioritize data-model alignment over model- or data-centric approaches; data ecosystems should focus on enhancing key attributes, such as diversity and quality, rather than broad multimodal integration; and a new theoretical and evaluation framework is needed to assess the "scientific efficacy" of data. This study provides a theoretical foundation and practical roadmap for advancing AI-driven scientific discovery.

Key words: AlphaFold, scientific data, data-model synergy, protein structure prediction, AI for science