农业大数据学报 ›› 2021, Vol. 3 ›› Issue (2): 3-15.doi: 10.19788/j.issn.2096-6369.210201
• 专刊——农业科学数据采集方法研究 • 下一篇
颜瑞1(), 王震1, 李言浩1, 李哲敏1,2, 李娴1()
收稿日期:
2021-05-05
出版日期:
2021-06-26
发布日期:
2021-08-31
通讯作者:
李娴
E-mail:yanrui_98@163.com;lixian@caas.cn
作者简介:
颜瑞,男,硕士研究生,研究方向:农业智能传感器及信息技术;E-mail: 基金资助:
Rui Yan1(), Zhen Wang1, Yanhao Li1, Zhemin Li1,2, Xian Li1()
Received:
2021-05-05
Online:
2021-06-26
Published:
2021-08-31
Contact:
Xian Li
E-mail:yanrui_98@163.com;lixian@caas.cn
摘要:
农业智能传感器是智慧农业的关键核心技术之一。本文首先阐述了智能传感器的概念、特征和实现方法,从而引入了农业智能传感器的构成、发展与应用。根据检测对象的不同,将农业智能传感器分为生命信息、环境信息和品质安全三大类,其中,生命信息智能传感器分为植物和动物生命信息,环境信息智能传感器分为水体、土壤、畜禽和气象环境信息。从目前农业智能传感器的构成与应用现状可以发现,当前我国农业智能传感器存在集成化程度较低(模块化方式实现)、农业智能传感器的核心元件(传感器元器件和微控制器)严重依赖进口、智能化程度不高等问题,应用范围有限。针对上述问题,分别从农业智能传感器技术中的核心控制器、农业传感器、无线通信网络和配套算法四个方面进行了深入剖析,其根源在于我国缺乏农业专用的核心控制器、自主研发的高端农业传感器少、缺乏农业适用的无线通信网络协议及高精度的智能传感器算法。针对以上问题,分别从研发中国“农业芯”和高性能MEMS传感器、构建农业专用无线网络和开发高性能智能算法方面提出可行对策,将有助于推进农业智能传感器的中国智造进程。在智慧农业快速发展的当下,农业智能传感器的中国智造之举至关重要。
中图分类号:
颜瑞, 王震, 李言浩, 李哲敏, 李娴. 中国农业智能传感器的应用、问题与发展[J]. 农业大数据学报, 2021, 3(2): 3-15.
Rui Yan, Zhen Wang, Yanhao Li, Zhemin Li, Xian Li. The Application, Problems and Development of China's Agricultural Smart Sensors[J]. Journal of Agricultural Big Data, 2021, 3(2): 3-15.
1 | 中国信通院.中国数字经济发展白皮书(2020)[R].北京:中国信通院,2020:3-4. |
China Academy of Information and Communications Technology. White Paper on China's Digital Economy Development (2020) [R]. Beijing: China Academy of Information and Communications Technology, 2020: 3-4. | |
2 | Kassim M R M. IoT Applications in Smart Agriculture: Issues and Challenges[C]//2020 IEEE Conference on Open Systems (ICOS). IEEE, 2020: 19-24. |
3 | Johnson N, Kumar M B S, Dhannia T. A study on the significance of smart IoT sensors and Data science in Digital agriculture[C]//2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA). IEEE, 2020: 80-88. |
4 | 中国电子技术标准化研究院.智能传感器型谱体系与发展战略白皮书[R/OL].[2021-01-20].. |
China Institute of Electronic Technology Standardization. Intelligent sensor spectrum system and development strategy white paper [R/OL]. [2021-01-20]. . | |
5 | Hauptmann P R. Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies[J]. Measurement Science and Technology, 2006, 17(3): 459. |
6 | Yurish S Y. Sensors: smart vs. intelligent[J]. Sensors & transducers, 2010, 114(3): I. |
7 | Taymanov R, Sapozhnikova K. What makes sensor devices and microsystems “intelligent” or “smart”?[M]//Smart Sensors and MEMs. Woodhead Publishing, 2018: 1-22. |
8 | 刘军华,汤晓君,张勇,等.智能传感器系统[M].第2版.西安:西安电子科技大学出版社,2010. |
Liu J H, Tang Xiaojun, Zhang Yong, etc. Intelligent sensor system [M]. 2nd edition. Xi'an: Xidian University Press, 2010. | |
9 | Li D, Wang Y, Wang J, et al. Recent advances in sensor fault diagnosis: A review[J]. Sensors and Actuators A: Physical, 2020: 111990. |
10 | Rymarczyk T, Król K, Zawadzki A, et al. An intelligent sensor platform with an open architecture for monitoring and controlling cyber-physical[J]. |
11 | Boltryk P J, Harris C J, White N M. Intelligent sensors—a generic software approach[C]//Journal of Physics: Conference Series. IOP Publishing, 2005, 15(1): 026. |
12 | Singh N, Singh A N. Odysseys of agriculture sensors: Current challenges and forthcoming prospects[J]. Computers and Electronics in Agriculture, 2020, 171: 105328. |
13 | Pathan M, Patel N, Yagnik H, et al. Artificial cognition for applications in smart agriculture: A comprehensive review[J]. Artificial Intelligence in Agriculture, 2020. |
14 | Basnet B, Bang J. The state-of-the-art of knowledge-intensive agriculture: A review on applied sensing systems and data analytics[J]. Journal of Sensors, 2018, 2018. |
15 | Yang L, Sarath Babu V, Zou J, et al. The development of an intelligent monitoring system for agricultural inputs basing on DBN-SOFTMAX[J]. Journal of Sensors, 2018, 2018. |
16 | Channe H, Kothari S, Kadam D. Multidisciplinary model for smart agriculture using internet-of-things (IoT), sensors, cloud-computing, mobile-computing & big-data analysis[J]. Int. J. Computer Technology & Applications, 2015, 6(3): 374-382. |
17 | 陈威,郭书普.中国农业信息化技术发展现状及存在的问题[J].农业工程学报,2013,29(22):196-205. |
Chen W, Guo S P. Development status and existing problems of China's agricultural information technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(22): 196-205. | |
18 | 张建华,吴建寨,韩书庆,等.农业传感器技术研究进展与性能分析[J].农业展望,2017,13(01):38-48. |
Zhang J H, Wu J Z, Han S Q, et al. Research progress and performance analysis of agricultural sensor technology[J]. Agricultural Outlook, 2017, 13(01): 38-48. | |
19 | Baert A, Villez K, Steppe K. Automatic drought stress detection in grapevines without using conventional threshold values[J]. Plant and soil, 2013, 369(1): 439-452. |
20 | Schlemmer M, Gitelson A, Schepers J, et al. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 25: 47-54. |
21 | 李恺,魏晓明,何芬.基于植物生理检测参数的温室环境控制研究进展[J].北方园艺,2020(15):130-137. |
Li K, Wei X M, He F. Research progress of greenhouse environment control based on plant physiological parameters[J]. Northern Horticulture, 2020(15): 130-137. | |
22 | 邱兆美,张昆,毛鹏军.我国植物生理传感器的研究现状[J].农机化研究,2013,35(08):236-240. |
Qiu Z M, Zhang K, Mao P J. Research status of plant physiological sensors in my country [J]. Journal of Agricultural Mechanization Research, 2013, 35(08): 236-240. | |
23 | 张小栓,张梦杰,王磊,等.畜牧养殖穿戴式信息监测 技术研究现状与发展分析[J].农业机械学报,2019,50(11):1-14. |
Zhang X S, Zhang M J, Wang L, et al. Research status and development analysis of wearable information monitoring technology for animal husbandry[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(11):1-14. | |
24 | 王梓乐,汪琳,洪炜,等.生命探测技术在口岸动物搜检中的应用分析[J].检验检疫学刊,2017,27(06):52-55. |
Wang Z L, Wang L, Hong W, et al. Application analysis of life detection technology in port animal search and inspection[J]. Journal of Inspection and Quarantine, 2017, 27(06): 52-55. | |
25 | Sellier N, Guettier E, Staub C. A review of methods to measure animal body temperature in precision farming[J]. American Journal of Agricultural Science and Technology, 2014, 2(2): 74-99. |
26 | 汪开英,赵晓洋,何勇.畜禽行为及生理信息的无损监测技术研究进展[J].农业工程学报,2017,33(20):197-209. |
Wang K Y, Zhao X Y, He Y. Research progress on non-destructive monitoring technology of livestock and poultry behavior and physiological information[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20):197-209. | |
27 | Carlos Alberto da Silva Oliveira. Determinação da tensão de água em solo agrícola usando um sensor de dissipação de calor Soil water evaluation in agricultural soil using a heat dissipation sensor[J]. Pesquisa Agropecuária Brasileira,1999,34(8). |
28 | 林兰芬,王瑞松,于鹏华.基于GIS的农田小气候环境可视监测系统[J].农业机械学报,2015,46(03):254-260. |
Lin L F, Wang R S, Yu P H. GIS-based visual monitoring system for farmland microclimate environment[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(03): 254-260. | |
29 | 胡金有,王靖杰,张小栓,等.水产养殖信息化关键技术研究现状与趋势[J].农业机械学报,2015,46(07):251-263. |
Hu J Y, Wang J J, Zhang X S, et al. Research status and trends of key technologies for aquaculture informatization[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(07): 251-263. | |
30 | Aunsa-Ard W, Pobkrut T, Kerdcharoen T, et al. Development of Intelligent Electronic Nose for Livestock Industries[C]//2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST). IEEE, 2021: 221-225. |
31 | Lakshmi S, Pandey A K, Ravi N, et al. Non-destructive quality monitoring of fresh fruits and vegetables[J]. Defence Life Science Journal, 2017, 2(2): 103-110. |
32 | 杨彪,杜荣宇,杨玉,等.便携式植物叶片叶绿素含量无损检测仪设计与试验[J].农业机械学报,2019,50(12):180-186. |
Yang B, Du R Y, Yang Y, et al. Design and experiment of a portable non-destructive tester for plant leaf chlorophyll content[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(12): 180-186. | |
33 | 史增芳,姜岩蕾.一种便携式玉米叶片含水检测仪器设计[J].农机化研究,2016,38(08):96-100. |
Shi Z F,Jiang Y LDesign of a portable corn leaf moisture detection instrument[J].Journal of Agricultural Mechanization Research,2016,38(08):96-100. | |
34 | 刘九庆,朱福安.应用电感式位移传感器设计的叶片厚度检测仪[J].东北林业大学学报,2018,46(02):84-87. |
Liu JQ, Zhu F A. Blade thickness detector designed with inductive displacement sensor[J]. Journal of Northeast Forestry University, 2018, 46(02): 84-87. | |
35 | Chai Y, Chen C, Luo X, et al. Cohabiting Plant‐Wearable Sensor In Situ Monitors Water Transport in Plant[J]. Advanced Science, 2021: 2003642. |
36 | Lakhiar I A, Jianmin G, Syed T N, et al. Monitoring and control systems in agriculture using intelligent sensor techniques: A review of the aeroponic system[J]. Journal of Sensors, 2018, 2018. |
37 | Astill J, Dara R A, Fraser E D G, et al. Smart poultry management: Smart sensors, big data, and the internet of things[J]. Computers and Electronics in Agriculture, 2020, 170: 105291. |
38 | Nóbrega L, Gonçalves P, Antunes M, et al. Assessing sheep behavior through low-power microcontrollers in smart agriculture scenarios[J]. Computers and Electronics in Agriculture, 2020, 173: 105444. |
39 | 田富洋,王冉冉,刘莫尘,等.基于神经网络的奶牛发情行为辨识与预测研究[J].农业机械学报,2013,44(S1):277-281. |
Tian F Y, Wang R R, Liu M C, et al. Research on identification and prediction of estrus behavior of dairy cows based on neural network[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(S1): 277-281. | |
40 | 陆明洲,沈明霞,丁永前,等.群养母猪饮水行为自动监测系统设计[J].南京农业大学学报,2013,36(05):133-138. |
Lu M Z, Shen M X, Ding Y Q, et al. Design of automatic monitoring system for sow drinking behavior in group breeding[J]. Journal of Nanjing Agricultural University, 2013, 36(05): 133-138. | |
41 | 浦雪峰,朱伟兴,陆晨芳.基于对称像素块识别的病猪行为监测系统[J].计算机工程,2009,35(21):250-252. |
Pu X F, Zhu W X, Lu C F. Sick pig behavior monitoring system based on symmetric pixel block recognition [J]. Computer Engineering, 2009, 35(21): 250-252. | |
42 | 刘飞龙.放牧羊群牧食行为监测系统研究[D].内蒙古农业大学,2020. |
Liu F L. Research on the grazing behavior monitoring system of grazing sheep [D]. Inner Mongolia Agricultural University, 2020. | |
43 | 杜剑峰. 基于物联网技术的养殖水质监测系统的设计与实现[D].大连海洋大学,2019. |
Du J F. Design and implementation of aquaculture water quality monitoring system based on Internet of Things technology [D]. Dalian Ocean University, 2019. | |
44 | 刘传领,陈明,池涛.基于LoRa无线通信的水产养殖监测系统设计及应用[J].华南农业大学学报,2020,41(06):154-160. |
Liu C L, Chen M, Chi T. Design and application of aquaculture monitoring system based on LoRa wireless communication [J]. Journal of South China Agricultural University, 2020, 41(06): 154-160. | |
45 | 金光,高子航,江先亮,等.基于低功耗广域网的海岛水产养殖环境监测系统研制[J].农业工程学报,2018,34(24):184-191. |
Jin G, Gao Z H, Jiang X L, et al. Development of island aquaculture environmental monitoring system based on low-power wide area network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(24): 184-191. | |
46 | Parra L, Sendra S, García L, et al. Design and deployment of low-cost sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process[J]. Sensors, 2018, 18(3): 750. |
47 | García L, Parra L, Jimenez J M, et al. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture[J]. Sensors, 2020, 20(4): 1042. |
48 | 薛飞.农田土壤信息智能化采集系统的研究[D].南京信息工程大学,2014. |
Xue F. Research on Intelligent Collection System of Farmland Soil Information [D]. Nanjing University of Information Science and Technology, 2014. | |
49 | 田二林,朱付保,张永霞,等.基于DSP的农田土壤信息采集器的改进设计[J].农机化研究,2020,42(06):216-219. |
Tian E L, Zhu F B, Zhang Y X, et al. Improved design of farmland soil information collector based on DSP[J]. Journal of Agricultural Mechanization Research, 2020, 42(06): 216-219. | |
50 | 刘浩蓬,卫佳,刘金,等.自走式西瓜盆栽土壤信息采集装置设计与试验[J].农业现代化研究,2018,39(02):352-358. |
Liu H P, Wei J, Liu J, et al. Design and experiment of a self-propelled watermelon potted soil information collection device[J]. Research of Agricultural Modernization, 2018, 39(02): 352-358. | |
51 | 高凯凯.基于物联网技术土壤多参数采集与传输系统的研究与实现[D].西安科技大学,2018. |
Gao K K. Research and implementation of soil multi-parameter acquisition and transmission system based on Internet of Things technology [D]. Xi'an University of Science and Technology, 2018. | |
52 | Yang L, Sarath Babu V, Zou J, et al. The development of an intelligent monitoring system for agricultural inputs basing on DBN-SOFTMAX[J]. Journal of Sensors, 2018, 2018. |
53 | 杨飞云,曾雅琼,冯泽猛,等. 畜禽养殖环境调控与智能研制装备技术研究进展[J]. 中国科学院院刊,2019,34(2):163-173. |
Yang F Y, Zeng Y Q, Feng Z M, et al. Research status on environmental control technologies and intelligent equipment for livestock and poultry production. Bulletin of Chinese Academy of Sciences, 2019,34(2):163-173. | |
54 | Rotz C.Alan. Environmental sustainability of livestock production[J]. Meat and Muscle Biology, 2020, 4(2): 11, 1-18. |
55 | Ren G, Lin T, Ying Y, et al. Agricultural robotics research applicable to poultry production: A review. Computers and Electronics in Agriculture, 2020, 169: 105216. |
56 | Pereira W F, Fonseca L D, Putti F F, et al. Environmental monitoring in a poultry farm using an instrument developed with the internet of things concept[J]. Computers and Electronics in Agriculture, 2020, 170: 105247. |
57 | 李帅. 基于LoRa的畜禽养殖环境自动监测系统设计与应用[D]. 河北农业大学,2020. |
Li S. Design and application of automatic mointoring system for livestock breeding environment based on LoRa[D]. Hebei Agricultural University, 2020. | |
58 | 梁圆媛. 畜禽养殖环境监测与控制系统的设计与实现[D]. 重庆师范大学,2018. |
Liang Y Y. Design and implementation of environmental monitoring and controling system for livestock and poultry breeding. Chongqing Normal Unversity, 2018. | |
59 | Wang X, Li W, Wang L, et al. Based on STM 32F103 cowshed environment intelligent control system[J]. IOP Conf. Series: Materials Science and Engineering, 2020, 782:052040. |
60 | Zhang Z. Research on Intelligent Measurement and Control System for Internet of Things in Greenhouse[C]. Journal of Physics: Conference Series. IOP Publishing, 2020, 1486(2): 022037. |
61 | 王嘉宁,牛新涛,徐子明,等.基于无线传感器网络的温室CO2浓度监控系统[J].农业机械学报,2017,48(07):280-285+367. |
Wang J L, Niu X T, Xu Z M, et al. Greenhouse CO2concentration monitoring system based on wireless sensor network[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(07): 280-285+367. | |
62 | 李小平,王学,孙艳春.基于物联网的农田环境监测系统设计[J].农业工程,2018,8(10):19-23. |
Li X P, Wang X, Sun Y C. Design of farmland environment monitoring system based on Internet of Things[J]. Agricultural Engineering, 2018, 8(10): 19-23. | |
63 | 刘映江.基于LoRaWAN物联网技术的农田环境监测系统的设计[D].西南石油大学,2018. |
Liu Y J. Design of farmland environment monitoring system based on LoRaWAN Internet of Things technology [D]. Southwest Petroleum University, 2018. | |
64 | Lakhiar I A, Jianmin G, Syed T N, et al. Monitoring and control systems in agriculture using intelligent sensor techniques: A review of the aeroponic system[J]. Journal of Sensors, 2018, 2018. |
65 | Li X, Xu J, Jiang Y, et al. Toward agricultural ammonia volatilization monitoring: A flexible polyaniline/Ti3C2Tx hybrid sensitive films based gas sensor[J]. Sensors and Actuators B: Chemical, 2020, 316: 128144. |
66 | 任敏,多拉娜,王帅,等.基于电子鼻和电子舌技术评价乳酸乳球菌对发酵乳风味品质的影响[J].中国食品学报,2021,21(01):246-255. |
Ren M, Dorana, Wang S, et al. Evaluation of the influence of Lactococcus lactis on the flavor quality of fermented milk based on electronic nose and electronic tongue technology[J]. Chinese Journal of Food Science, 2021, 21(01): 246- 255. | |
67 | 杨晨昱,袁鸿飞,马惠玲,等.基于FT-NIR和电子鼻技术的苹果霉心病无损检测[J/OL].食品与发酵工业:1-8[2021-06-03].. |
Yang C Y, Yuan H F, Ma H L, et al. Non-destructive detection of apple mold heart disease based on FT-NIR and electronic nose technology[J/OL]. Food and fermentation industry: 1-8[2021-06-03].https:/ /doi.org/10.13995 | |
/j.cnki.11-1802/ts.025671. | |
68 | 王彬.基于电子鼻及可见—近红外光谱的鸡蛋品种及产地鉴别研究[D].华中农业大学,2018. |
Wang B. Research on identification of egg varieties and origin based on electronic nose and visible-near infrared spectroscopy[D]. Huazhong Agricultural University, 2018. | |
69 | 王永瑞,柏霜,罗瑞明,等.基于电子鼻、GC-MS结合化学计量学方法鉴别烤羊肉掺假[J/OL].食品科学:1-14[2021-06-03].. |
Wang Y R, Bai S, Luo R M, et al. Identification of roast lamb adulteration based on electronic nose, GC-MS combined with chemometric methods [J/OL]. Food Science: 1-14 [2021-06-03]. . | |
70 | Qi W, Wang H, Zhou Z, et al. Ethylene Emission as a Potential Indicator of Fuji Apple Flavor Quality Evaluation Under Low Temperature[J]. Horticultural Plant Journal, 2020, 6(4): 231-239. |
71 | de Araujo Zanella A R, da Silva E, Albini L C P. Security challenges to Smart Agriculture: Current State, Key Issues, and Future Directions[J]. Array, 2020: 100048. |
72 | 张保辉,查燕,史云.智慧农业装备依赖进口情况、潜在风险及对策建议[J].中国农业信息,2019,31(04):113-120. |
Zhang B H, Zha Y, Shi Y. Importation of smart agricultural equipment, potential risks and countermeasures[J]. China Agricultural Information, 2019, 31(04): 113-120. | |
73 | Khujamatov K E, Toshtemirov T K. Wireless sensor networks based Agriculture 4.0: challenges and apportions[C]//2020 International Conference on Information Science and Communications Technologies (ICISCT). IEEE, 2020: 1-5. |
74 | Singh A, Sharma S, Singh J. Nature-inspired algorithms for wireless sensor networks: A comprehensive survey[J]. Computer Science Review, 2021, 39: 100342. |
75 | Sun Z, Li Z. CoC-SCS: Cooperative-Optimization Coverage Algorithm Based on Sensor Cloud Systems in Intelligent Computing[J]. IEEE Access, 2020, 8: 129058-129074. |
76 | Chai Y. In-sensor computing for machine vision[J]. 2020. Zhou F, Chai Y. |
77 | Near-sensor and in-sensor computing[J]. Nature Electronics, 2020, 3(11): 664-671. |
78 | Reddy K S P, Roopa Y M, Nandan N S. IoT based Smart Agriculture using Machine Learning[C]//2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE, 2020: 130-134. |
79 | Vangala A, Das A K, Kumar N, et al. Smart secure sensing for IoT-based agriculture: Blockchain perspective[J]. IEEE Sensors Journal, 2020. |
80 | Maduranga M W P, Abeysekera R. Machine learning applications in IoT based agriculture and smart farming: A review[J]. International Journal of Engineering Applied Sciences and Technology, 2020, 24. |
[1] | 冯小鼎, 王晓冬, 罗斌, 王成. 基于LabVIEW的植物离子吸收多参数检测系统软件研发[J]. 农业大数据学报, 2021, 3(2): 16-23. |
[2] | 李强, 高懋芳, 方莹. 农业大数据信息平台构建方法初探[J]. 农业大数据学报, 2021, 3(2): 24-30. |
[3] | 王慧, 王海江, 高攀, 张泽, 侯彤瑜, 吕新. 新疆生产建设兵团农业资源数据采集与整合方法研究[J]. 农业大数据学报, 2021, 3(2): 31-41. |
|