1 |
Vos J, Evers J B, Buck-Sorlin G, et al. Functional–structural plant modelling: a new versatile tool in crop science. Journal of Experimental Botany, 2009, 61(8): 2101–2115.
|
2 |
Eschenbach C. Emergent properties modelled with the functional structural tree growth model ALMIS: Computer experiments on resource gain and use[J]. 2005,186(4): 470-488.
|
3 |
Perttunen J, Sievänen R, Nikinmaa E, et al. LIGNUM: A tree model based on simple structural units[J]. Annals of botany, 1996,77(1): 87-98.
|
4 |
Allen M T, Prusinkiewicz P, DeJong T M. Using L‐systems for modeling source–sink interactions, architecture and physiology of growing trees: the L‐PEACH model[J]. New phytologist, 2005, 166(3): 869-880.
|
5 |
Pradal C, Dufour-Kowalski S, Boudon F, et al. OpenAlea: a visual programming and component-based software platform for plant modelling[J]. Functional Plant Biology, 2008,35(9-10): 751-760.
|
6 |
Kniemeyer O, Kurth W. The modelling platform GroIMP and the programming language XL[C]//International Symposium on Applications of Graph Transformations with Industrial Relevance. Springer, Berlin, Heidelberg, 2007: 570-572.
|
7 |
de Reffye P, Snoeck J, Walyaro D J, et al. Modele mathématique de base pour l'étude et la simulation de la croissance rt de l'architecture du Coffea robusta[J]. Cafe Cacao the, 1976, 20(1) : 11-32.
|
8 |
de Reffye P, Edelin C, Françon J, et al. Plant models faithful to botanical structure and development[J]. ACM Siggraph Computer Graphics, 1988, 22(4): 151-158.
|
9 |
Hallé F, Oldeman R A A, Tomlinson P B. Tropical trees and forests. An architectural analysis[M]. Berlin-Heidelberg-New York: Springer-Verlag, 1978.
|
10 |
de Reffye P, Fourcaud T, Laise F B, et al. A functional model of tree growth and tree architecture[J]. Silva Fennica, 1997,31(3).
|
11 |
de Reffye P, Hu B G, Kang M, et al. Two decades of research with the GreenLab model in Agronomy[J]. Annals of botany, 2020,3(127): 281-295.
|
12 |
Letort V, P-H Cournède, Mathieu A, et al. Parametric identification of a functional-structural tree growth model and application to beech trees (Fagus sylvatica), Functional Plant Biology, 2008, 35(9-10):951-963.
|
13 |
Kang M Z, de Reffye P, Heuvelink E. Modeling the growth of inflorescence[C]//2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. IEEE, 2009: 303-310.
|
14 |
Kang M Z, Heuvelink E, Carvalho S M P, et al. A virtual plant that responds to the environment like a real one: the case for chrysanthemum[J]. The New Phytologist, 2012,195(2): 384-395.
|
15 |
Jaeger M, de Reffye P. Basic concepts of computer simulation of plant growth[J]. Journal of Biosciences, 1992,17(3): 275-291.
|
16 |
赵星, de Reffye P., 熊范纶, 等. 虚拟植物生长的双尺度自动机模型[J]. 计算机学报, 2001,24(6): 608-615.
|
|
Zhao X, de Reffye P., Xiong F L, et al. Dual-scale automaton model for virtual plant development[J]. Chinese Journal of Computers, 2001, 24(6): 608-615.
|
17 |
Kang M Z, Hua J, Wang X J, et al. Estimating sink parameters of stochastic functional-structural plant models using organic series-continuous and rhythmic development.[J]. Frontiers in plant science, 2018(9): 1688.
|
18 |
Hu B G, de Reffye P, Zhao X, et al. Greenlab: A new methodology towards plant functional-structural model--structural part[C]//Plant growth modelling and applications. TsingHua University Press and Springer, 2003: 21-35.
|
19 |
Kang M Z, Cournède P, de Reffye P, et al. Analytical study of a stochastic plant growth model: Application to the GreenLab model[J]. Mathematics and Computers in Simulation, 2008,78(1): 57-75.
|
20 |
Lindenmayer A. Mathematical models for cellular interactions in development I. Filaments with one-sided inputs[J]. Journal of Theoretical Biology, 1968,18(3): 280-299.
|
21 |
Yan H, de Reffye P, Pan C, et al. Fast construction of plant architectural models based on substructure decomposition[J]. Journal of Computer Science and Technology, 2003,18(6): 780-787.
|
22 |
Heuvelink E. TOMSIM: a dynamic simulation model for tomato crop growth and development[C]//ISHS Second Int. Symp. on Models for Plant Growth, Env. Control and Farm Management in Protected Cultivation, Wageningen, The Netherlands (1997). 1997.
|
23 |
Marcelis L F M, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops: a review[J]. Scientia Horticulturae, 1998,74(1): 83-111.
|
24 |
Yan H P, Kang M Z, de Reffye P, et al. A dynamic, architectural plant model simulating resource-dependent growth, Annals of Botany, 2004, 93(5):591-602.
|
25 |
Buis R, Barthou H. Relations dimensionnelles dans une série organique en croissance chez une plante supérieure[J]. Review Biomathematics, 1983,85: 1-19.
|
26 |
Véronique L, Sylvie S, Pamelas O M, et al. Internal trophic pressure, a regulator of plant development? Insights from a stochastic functional–structural plant growth model applied to Coffea trees[J]. Annals of Botany, 2020, 126(4): 687-699.
|
27 |
Yang W, Feng H, Feng X, et al. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives[J]. Molecular Plant, 2020,13(2): 187-214.
|
28 |
Fan X R, Kang M Z, Heuvelink E, et al. A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth[J]. Ecological Modelling, 2015,312: 363-373.
|
29 |
Kang M Z, Wang F -Y. From parallel plants to smart plants: intelligent control and management for plant growth[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2): 161-167.
|
30 |
Kang M Z, Fan X R, Hua J, et al. Managing traditional solar greenhouse with CPSS: A just-for-fit philosophy[J]. IEEE Transactions on Cybernetics, 2018,48(12): 3371-3380.
|
31 |
Sharathkumar M, Heuvelink E, Marcelis L F M. Vertical farming: moving from genetic to environmental modification[J]. Trends in Plant Science, 2020,25(8): 724-727.
|
32 |
Fan X R, Wang X J, Kang M Z, et al. A knowledge-and-data-driven modeling approach for simulating plant growth and the dynamics of CO2/O2 concentrations in a closed system of plants and humans by integrating mechanistic and empirical models[J]. Computers and Electronics in Agriculture, 2018, 148: 280-290.
|
33 |
Chenu K, Porter J R, Martre P, et al. Contribution of crop models to adaptation in wheat[J]. Trends in Plant Science, 2017,22(6): 472-490.
|