| 1 | Han J W, Zuo M, Zhu W Y, et al. A comprehensive review of cold chain logistics for fresh agricultural products: Current status, challenges, and future trends[J]. Trends in Food Science & Technology, 2021, 109: 536-551. | 
																													
																						| 2 | Zhao H X, Liu S, Tian C Q, et al. An overview of current status of cold chain in China[J]. International Journal of Refrigeration, 2018, 88: 483-495. | 
																													
																						| 3 | Mercier S, Villeneuve S, Mondor M, et al. Time-Temperature management along the food cold chain: A review of recent developments[J]. Comprehensive Reviews in Food Science and Food Safety, 2017, 16(4): 647-667. | 
																													
																						| 4 | Badia-Melis R, Mc Carthy U, Ruiz-Garcia L, et al. New trends in cold chain monitoring applications: A review[J]. Food Control, 2018, 86: 170-182. | 
																													
																						| 5 | 齐林,韩玉冰,张小栓,等. 基于WSN的水产品冷链物流实时监测系统[J]. 农业机械学报,2012,43(8):134-140. | 
																													
																						|  | Qi L, Han Y B, Zhang X S, et al. Real time monitoring system for aquatic cold-chain logistics based on WSN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8): 134-140. | 
																													
																						| 6 | 钱建平,范蓓蕾,张翔,等. 基于温度感知RFID标签的冷链厢体中温度监测[J]. 农业工程学报,2017,33(21):282-288. | 
																													
																						|  | Qian J P, Fan B L, Zhang X, et al. Temperature monitoring in cold chain chamber based on temperature sensing RFID labels[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 282-288. | 
																													
																						| 7 | Lang W, Jedermann R, Mrugala D, et al. The “Intelligent Container”—A Cognitive Sensor Network for Transport Management[J]. IEEE Sensors Journal, 2011, 11(3): 688-698. | 
																													
																						| 8 | Zeeshan M, Javed K, Sharma B B, et al. Signal conditioning of thermocouple using intelligent technique[J]. Materials today: proceedings, 2017, 4(9): 10627-10631. | 
																													
																						| 9 | Tang S R, Chen W G, Jin L F, et al. SWCNTs-based MEMS gas sensor array and its pattern recognition based on deep belief networks of gases detection in oil-immersed transformers[J]. Sensors and Actuators B: Chemical, 2020, 312: 127998. | 
																													
																						| 10 | do Nascimento Nunes M C, Nicometo M, & Emond J P, et al. Improvement in fresh fruit and vegetable logistics quality: berry logistics field studies[J]. Transactions of the Royal Society A, 2014, 372: 20130307. | 
																													
																						| 11 | Badia-Melis R, Qian J P, Fan B L, et al. Artificial Neural Networks and Thermal Image for Temperature Prediction in Apples[J]. Food and Bioprocess Technology, 2016, 9(7): 1089-1099. | 
																													
																						| 12 | Mercier S, Uysal I. Neural network models for predicting perishable food temperatures along the supply chain[J]. Biosystems Engineering, 2018, 171: 91-100. | 
																													
																						| 13 | Chen K Y, Shaw Y C. Applying back propagation network to cold chain temperature monitoring[J]. Advanced Engineering Informatics, 2011, 25(1): 11-22. | 
																													
																						| 14 | Hoang H M, Akerma M, Mellouli N, et al. Development of deep learning artificial neural networks models to predict temperature and power demand variation for demand response application in cold storage[J]. International Journal of Refrigeration, 2021, 131: 857-873. | 
																													
																						| 15 | Han J W, Qian J P, Zhao C J, et al. Mathematical modelling of cooling efficiency of ventilated packaging: Integral performance evaluation[J]. International Journal of Heat and Mass Transfer, 2017, 111: 386-397. | 
																													
																						| 16 | 曾志雄,罗毅智,余乔东,等. 基于时间序列和多元模型的集约化猪舍温度预测[J]. 华南农业大学学报, 2021, 42(3): 111-118. | 
																													
																						|  | Zeng Z X, Luo Y Z, Yu Q D, et al. Temperature prediction of intensive pig house based on time series and multivariate models[J]. Journal of South China Agricultural University, 2021, 42(3): 111-118. (in Chinese with English abstract) | 
																													
																						| 17 | 赵全明,宋子涛,李奇峰,等. 基于CNN-GRU的菇房多点温湿度预测方法研究[J]. 农业机械学报, 2020, 51(9): 294-303.. | 
																													
																						|  | Zhao Q M, Song Z T, Li Q F, et al. Multi-point Prediction of Temperature and Humidity of Mushroom Based on CNN-GRU[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 294-303. (in Chinese with English abstract) | 
																													
																						| 18 | 王增平,赵兵,纪维佳,等 .基于GRU-NN模型的短期负荷预测方法[J].电力系统自动化,2019,43(5):53-62. | 
																													
																						|  | Wang Z P, Zhao B, Ji W J, et a1. Short-term load forecasting method based on GRU-NN model[J]. Automation of Electric Power Systems, 2019, 43(5): 53-62.(in Chinese with English abstract) | 
																													
																						| 19 | 金宇,赵秉文,郑晗羽,等 .基于GRU神经网络的供热负荷预测研究[J]. 科技通报, 2022, 38(1): 68-72. | 
																													
																						|  | Jin Y, Zhao B W, Zheng H Y, et a1 .Research on heating load forecast based on GRU neural network[J]. Bulletin of science and technology, 2022, 38(1): 68-72. (in Chinese with English abstract) | 
																													
																						| 20 | 左志宇,毛罕平,张晓东,等. 基于时序分析法的温室温度预测模型[J]. 农业机械学报, 2010, 41(11): 173-177. | 
																													
																						|  | Zuo Z Y, Mao H P, Zhang X D, et al. Forecast model of greenhouse temperature based on time series method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 173-177. (in Chinese with English abstract) | 
																													
																						| 21 | 陈英义,程倩倩,方晓敏,等. 主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧[J]. 农业工程学报, 2018, 34(17): 183-191. | 
																													
																						|  | Chen Y Y, Cheng Q Q, Fang X M, et al. Principal component analysis and long short-term memory neural network for predicting dissolved oxygen in water for aquaculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2018, 34(17): 183-191. (in Chinese with English abstract) |