农业大数据学报 ›› 2022, Vol. 4 ›› Issue (1): 89-97.doi: 10.19788/j.issn.2096-6369.220110

• 专题——农产品冷链物流智能管控与大数据 • 上一篇    下一篇

基于K均值聚类算法的生鲜运输路径优化模型

周蓉蓉1,3(), 陈栋2,3(), 刘思远2,4   

  1. 1.南京国家现代农业产业科技创新中心,南京 211800
    2.国家农业信息化工程技术研究中心,北京 100097
    3.智慧农业技术集成与应用创新农业农村部重点实验室,南京 211800
    4.广西大学 计算机与电子信息学院,南宁 530004
  • 收稿日期:2022-01-08 出版日期:2022-03-26 发布日期:2022-06-29
  • 通讯作者: 陈栋 E-mail:jstfzzrr@163.com;chend@nercita.org.cn
  • 作者简介:周蓉蓉,女,硕士,研究方向:农业信息技术 ; E-mail:jstfzzrr@163.com
  • 基金资助:
    北京市科技计划课题(Z191100004019007)

Optimization Model of Vehicle Scheduling for Fresh Food Distribution Using the K-means Clustering Algorithm

Rongrong Zhou1,3(), Dong Chen2,3(), Siyuan Liu2,4   

  1. 1.Nanjing National Modern Agricultural Industry Science and Technology Innovation Demonstration Park Management Committee, Nanjing 211800, China
    2.National Engineering Research Center for Information Technology in Agriculture(NERCITA), Beijing 10097, China
    3.Agricultural Core (Nanjing) Institute of Intelligent Agriculture, Nanjing 211800, China
    4.Guangxi University, Nanning 530004, China
  • Received:2022-01-08 Online:2022-03-26 Published:2022-06-29
  • Contact: Dong Chen E-mail:jstfzzrr@163.com;chend@nercita.org.cn

摘要:

针对生鲜农产品供应企业面临的生鲜配送时效性高,生鲜配送过程损耗高,配送车辆调度人工依赖性强的问题。本研究基于车辆路径优化方法,面向生鲜农产品城市配送场景,针对以上问题提出了基于K均值聚类算法的生鲜运输路径优化模型。模型求解过程引入K均值聚类算法,实现了根据配送目的地位置的配送单元划分,以配送车辆使用数量较少情况下配送距离和货物损耗最小为目标函数,并使用改进的遗传算法进行求解,从而实现了生鲜农产品城市配送场景下的车辆最优调度、路径自主优化等功能。本研究采用北京某生鲜供应企业实际的配送过程数据作为研究数据对模型进行训练求解,结果显示在对配送目的地不进行聚类情况下配送的里程为3753.01公里,使用的车辆数量为32辆;在对配送目的地进行聚类情况下配送的里程为2105.4公里,使用过的车辆数量为34辆;在使用的车辆数量没有大幅度增长的情况下,经过聚类分组的模型求解相比未进行聚类分组的模型求解其配送总里程降低了43.9%。因此,可以得出基于K均值聚类算法的生鲜运输路径优化模型适合城市生鲜配送场景的应用。最后,本研究基于以上研究模型设计研发了适用于城市生鲜农产品配送的车辆路径优化服务系统,实现了生鲜配送车辆调度优化等功能,为生鲜供应企业降低配送成本,提升企业效率提供了有效手段。

关键词: 城市生鲜配送, 多目标路径优化, K均值聚类, 生鲜农产品, 农产品物流, 农产品供应链

Abstract:

Key issues facing enterprises engaged in the supply of fresh agricultural products include the timeliness of the distribution of fresh food, the high cost of this distribution, and predominantly manual scheduling of distribution vehicles. A method to optimize vehicle routes, using the K-means clustering algorithm, was used to develop a model for optimizing transport routes by projecting the urban distribution scenario of fresh agricultural products. The K-means clustering algorithm, an improved genetic algorithm, was introduced into a model for optimizing the distribution paths of fresh produce, which enabled the division of distribution units to be matched with the distribution locations. Consequently, distribution distances and cargo losses were minimized, and the time window as an objective function was not violated. Actual data derived from the distribution orders of a fresh food supply company in Beijing were used in the study. The results of the analysis indicated that without clustering the distribution destinations, the distribution mileage amounted to 3,753.01 km, and the number of vehicles used was 32. The corresponding delivery mileage covered when the delivery destinations were clustered was 2,105.4 km, and the number of vehicles used was 34. When the number of vehicles used exceeded a small number, the total delivery mileage calculated by clustering grouping model was 43.9% lower than that calculated without clustering grouping model. Therefore, it can be concluded that the clustering algorithm based on K-means is suitable for developing distribution scenarios entailing a wide geographical range. A service system for the distribution of urban fresh agricultural products can be designed and developed using the above model. It provides effective means for fresh supply enterprises to reduce distribution cost and improve enterprise efficiency.

Key words: fresh food delivery, vehicle scheduling optimization model, K-Means clustering algorithm, fresh agricultural products, agricultural product logistic, Agri-food supply chain

中图分类号: 

  • TU205