AlphaFold,scientific data,data-model synergy,protein structure prediction,AI for science,"/> 科学数据视角下AlphaFold的迭代突破与数据策略启示

农业大数据学报

• •    下一篇

科学数据视角下AlphaFold的迭代突破与数据策略启示

欧阳峥峥1,2,马毓聪2*,寇远涛1,3*,鲜国建1,王辉4,5,赵群1   

  1. 1. 中国农业科学院农业信息研究所,北京100081;2. 中国科学院成都文献情报中心,成都 610299;3. 农业融合出版知识挖掘与知识服务重点实验室,北京 100081;4. 中国科学院文献情报中心,北京100190;5. 中国科学院大学经济管理学院信息资源管理系,北京100190
  • 出版日期:2025-11-19 发布日期:2025-11-19

Unveiling AlphaFold’s Iterative Breakthroughs: Data Strategy Insights from a Scientific Perspective

OUYANG ZhengZheng1,2MA YuCong2*KOU YuanTao1,3*, XIAN GuoJian1, WANG Hui4,5, ZHAO Qun1    

  1. 1. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. National Science Library (Chengdu), Chinese Academy of Sciences, Chengdu 610299, China; 3. Key Laboratory of Knowledge Mining and Knowledge Services in Agricultural Converging Publishing, Beijing 100081, China;4. National Science Library, Chinese Academy of Sciences, Beijing 100190, China; 5. Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China

  • Published:2025-11-19 Online:2025-11-19

摘要:

AlphaFold系列模型在结构生物学领域的革命性突破常被归因于算法创新,但其背后更为根本的科学数据策略演进却鲜有系统性剖析。本文从科学数据的核心视角出发,系统解构AlphaFold 1至3代的迭代突破机制,聚焦数据内在属性优化、表征范式革新、数据-模型协同适配三大关键层面,论证模型每一次性能跃升的本质均是数据-模型协同进化的结果。研究揭示:AlphaFold的演进是其数据策略从被动沿用、主动构建到生成赋能的历程。基于此,本文提炼出三大核心规律:表征范式的跃迁是突破的核心驱动,数据-模型的协同演进是成熟的关键标志,而数据内在属性的丰富度则决定了AI学习范式的上限。这些规律为AI for Science(AI4S)领域带来四大关键启示:数据工作需从被动准备转向主动设计;研发应从“模型/数据中心”转向以“契合度”为中心;数据体系构建应靶向提升核心属性而非盲目多模态聚合;业界亟待构建一套衡量数据“科学效能”的全新理论与评估框架,为AI驱动的科学发现提供理论支撑与路径参考。

关键词: AlphaFold, 科学数据, 数据-模型协同, 蛋白质结构预测, AI驱动科学发现

Abstract: The transformative breakthroughs of the AlphaFold series in structural biology are often attributed to algorithmic advances, yet the critical role of its evolving data strategy remains underexplored. Adopting a data-centric perspective, this paper deconstructs the iterative mechanisms driving AlphaFold’s progress from versions 1 to 3, emphasizing the optimization of data quality attributes, innovations in representation paradigms, and data-model synergy. The analysis reveals that each performance leap stems from the co-evolution of data and model architectures. AlphaFold’s data strategy follows a clear trajectory: from passive data adoption, to proactive data construction, and finally to generative data augmentation. From this, three core principles emerge: paradigm shifts in data representation are the primary drivers of breakthroughs; data-model co-evolution is a hallmark of system maturity; and the richness of data quality attributes sets the ceiling for an AI’s learning potential. These principles yield four implications for the AI for Science (AI4S) field: data practices should shift from passive preparation to active design; research should prioritize data-model alignment over model- or data-centric approaches; data ecosystems should focus on enhancing key attributes, such as diversity and quality, rather than broad multimodal integration; and a new theoretical and evaluation framework is needed to assess the "scientific efficacy" of data. This study provides a theoretical foundation and practical roadmap for advancing AI-driven scientific discovery.

Key words: AlphaFold')">

AlphaFold, scientific data, data-model synergy, protein structure prediction, AI for science