[1] |
任小玢, 张东海, 俞鸿千, 等. 气候变化和人为活动在宁夏草地变化中的相对作用. 生态学报, 2022, 42(19): 7989-8001.
|
[2] |
ZHANG Y Z, WANG Z Q, YANG Y, et al. Research on the quantitative evaluation of grassland degradation and spatial and temporal distribution on the Mongolia Plateau. Pratacultural Science, 2018, 12(2): 233-243. DOI:10.11829/J.issn.1001-0629.2017-0220.
|
[3] |
林丽. 高寒草甸不同演替状态下植物、土壤对放牧强度的响应与适应.甘肃农业大学, 2017.
|
[4] |
汤永康, 武艳涛, 武魁, 等. 放牧对草地生态系统服务和功能权衡关系的影响. 植物生态学报, 2019, 43(5): 408-417.
doi: 10.17521/cjpe.2018.0289
|
[5] |
乔郭亮, 金晓斌, 顾铮鸣, 等. 2000—2018年天山中段高海拔草地暖季承载力. 农业工程学报, 2021, 37(22): 253-262.
|
[6] |
FAN F, LIANG C Z, TANG Y K, et al. Effects and relationships of grazing intensity on multiple ecosystem services in the Inner Mongolian steppe. Science of the Total Environment, 2019, 675(20): 642-650. DOI:10.1016/j.scitotenv.2019.04.279.
|
[7] |
ZHENG S X, LI W H, LAN Z C, et al. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity. Science Report, 2015, 5(1): 1-12. DOI:10.1038/srep18163.
|
[8] |
王鹏. 黄土高原不同放牧强度生态经济社会系统耦合效应研究[D], 中国科学院大学, 2023.
|
[9] |
李婷, 乔志宏, 冯玮含, 等. 放牧强度约束下黄土高原生态系统服务时空变化特征. 生态与农村环境学报, 2024, 40(3): 313-324.
|
[10] |
PIIPPONEN J, JALAVA M, De LEEUW J, et al. Global trends in grassland carrying capacity and relative stocking density of livestock. Global Change Biology, 2022, 28(12): 3902-3919. DOI: 10.1111/gcb.16174.
pmid: 35320616
|
[11] |
ZHANG Y X, WANG G G, ZHANG Y, et al. Climate change is likely to alter sheep and goat distributions in Mainland China. Frontiers in Environmental Science, 2021, 9(13): 1-13. DOI: 10.3389/fenvs.2021.748734.
|
[12] |
李兰晖, 黄聪聪, 张镱锂, 等. 基于地理加权随机森林的青藏地区放牧强度时空格局模拟. 地理科学, 2023, 43(3): 398-410.
doi: 10.13249/j.cnki.sgs.2023.03.003
|
[13] |
万里强, 陈玮玮, 李向林, 等. 放牧强度对山羊采食行为的影响. 草业学报, 2013, 22(4): 275-282.
doi: 10.11686/cyxb20130433
|
[14] |
ROBINSON T P, WINT G W, CONCHEDDA G, et al. Mapping the global distribution of livestock. PloS One, 2014, 9(5): 1-13. DOI: 10.1371/journal.pone.0096084.
|
[15] |
菅永峰, 韩泽民, 黄光体, 等. 基于高分辨率遥感影像的北亚热带森林生物量反演. 生态学报, 2021, 41(6): 2161-2169.
|
[16] |
王琪, 常庆瑞, 李铠, 等. 基于主成分分析和随机森林回归的冬小麦冠层叶绿素含量估算. 麦类作物学报, 2024, 44(4): 532-542.
|
[17] |
岳继博, 杨贵军, 冯海宽. 基于随机森林算法的冬小麦生物量遥感估算模型对比. 农业工程学报, 2016, 32(18): 175-182.
|
[18] |
任孟林, 郭妍, 陈伯轩, 等. 红松人工林地表可燃物火蔓延速率预测模型. 应用生态学报, 2023, 34(8): 2091-2100.
doi: 10.13287/j.1001-9332.202308.024
|
[19] |
ZHU Z P, ZHANG X M, DONG H M, et al. Integrated livestock sector nitrogen pollution abatement measures could generate net benefits for human and ecosystem health in China. Nature Food, 2022, 3(2): 161-168. DOI:10.1038/s43016-022-00462-6.
pmid: 37117962
|
[20] |
LKHAGVASUREN S(彩虹). 蒙古国肉类出口的影响因素分析. 天津科技大学, 2020.
|
[21] |
MENG X Y, GAO X, LI S, et al. Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecol Indic, 2021, 129(23):1-15. DOI: 10.1016/j.ecolind.2021.107908.
|
[22] |
胡晓阳, 王兆锋, 张镱锂, 等. 青藏高原放牧强度空间化方法与应用. 地理学报, 2022, 77(3):547-558.
doi: 10.11821/dlxb202203004
|
[23] |
BOND-LAMBERTY B, NICOLAS G, ROBINSON T P, et al. Using Random Forest to improve the downscaling of global livestock census data. Plos One, 2016, 11(3): 1-16. DOI: 10.1371/journal.pone.0150424.
|
[24] |
李紫荆, 胥辉. 基于遥感技术的宜良县云南松蓄积量反演. 绿色科技, 2022, 24(2): 1-6.
|
[25] |
乌达巴拉, 何亭漪, 李秀男, 等. 蒙古国畜牧业发展现状. 当代畜禽养殖业, 2022, 28(1): 28-29+37.
|
[26] |
OTTE J, COSTALES A, DIJKMAN J, et al. Livestock sector development for poverty reduction: An economic and policy perspective livestock many virtues. Food and Agriculture Organization of the United Nations Rome, 2012. https://www.fao.org./docrep/015/i2744e/i2744e00. pdf.
|