Journal of Agricultural Big Data ›› 2021, Vol. 3 ›› Issue (3): 62-75.doi: 10.19788/j.issn.2096-6369.210307
Previous Articles Next Articles
Peisen Yuan1(), Mingjia Xue1, Yingjun Xiong1, Zhaoyu Zhai2, Huanliang Xu1()
Received:
2020-03-11
Online:
2021-09-26
Published:
2020-10-30
Contact:
Huanliang Xu
E-mail:peiseny@njau.edu.cn;huanliangxu@njau.edu.cn
CLC Number:
Peisen Yuan, Mingjia Xue, Yingjun Xiong, Zhaoyu Zhai, Huanliang Xu. Analysis and Application of High-throughput Plant Phenotypic Big Data Collected from Unmanned Aerial Vehicles[J].Journal of Agricultural Big Data, 2021, 3(3): 62-75.
Table 1
Common types of sensor used in plant phenotyping using UAV"
传感器类型 | 优势 | 不足 | 应用 |
---|---|---|---|
数码相机 | 成本低、直观便捷的获取作物表型信息 | 易受环境光阴影影响,解析表型信息较少;像幅较小、影响数量多。 | 叶色、花期、株高、倒伏、冠层覆盖度 |
光谱成像仪 | 可以间接观测多项作物表型信息;不仅有光谱分辨能力,还有图像分辨能力 | 需要辐射及几何校正;高光谱数据处理较为复杂 | LAI、生物量、产量、出苗率、返青率、氮含量、叶绿素含量、水分状态、蛋白质含量、净同化速率 |
热成像仪 | 可实现作物生物/非生物胁迫条件下作物生长状态的间接测定 | 易受环境条件的影响,很难比较不同时间的数据;难以消除土壤的影响;需频繁的校准。 | 净同化速率、作物水分状态、气孔导度、产量 |
激光雷达 | 丰富的点云信息,高精度的水平和垂直植被冠层结构参数 | 成本高,数据处理量较大,易受天气影像 | 株高、生物量 |
Table.2
Several visible vegetation index"
数码影像变量 | 公式 | 变量编码 |
---|---|---|
MGRVI | MGRVI=(g2—r2)/ (g2+r2) | VI4 |
RGBVI | RGBVI=(g2—br)/(g2+br) | VI5 |
GRVI | GRVI=(g-r)/(g+r) | VI6 |
GLA | GLA=(2g-r-b)/(2g+r+b) | VI7 |
ExR | ExR=1.4r-g | VI8 |
ExG | ExG=2g-r-b | VI9 |
ExGR | ExGR=ExG-1.4r-g | VI10 |
CIVE | CIVE=0.441r-0.881g+ 0.3856b+18.78745 | VI11 |
VARI | VARI=(g-r)/(g+r-b) | VI12 |
g/r | g/r=g/r | VI13 |
g/b | g/b=g/b | VI14 |
r/b | r/b=r/b | VI15 |
1 | Skaien C, Arcese P. Spatial variation in herbivory, climate and isolation predicts plant height and fruit phenotype in Plectritis congesta populations on islands[J]. Journal of Ecology, 2018, 106(6): 2344-2352. |
2 | 刘建刚,赵春江,杨贵军,等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016, 32(24): 98-106. |
Liu J G, Zhao C J, Yang G J, et al. Research Progress in Remote Sensing Analysis of Crop Phenotype information by UAV[J]. Agricultural Engineering, 2016, 32(24): 98-106. | |
3 | Pajares G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs)[J]. Photogrammetric Engineering and Remote Sensing, 2015, 81(4): 281-329. |
4 | Groskinsky D K, Svensgaard J, Christensen S, et al. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap[J]. Journal of Experimental Botany, 2015, 66(18): 5429-5440. |
5 | Coverdale T C, Mcgeary I J, Oconnell R D, et al. Strong but opposing effects of associational resistance and susceptibility on defense phenotype in an African savanna plant[J]. Oikos, 2019, 128(12): 1772-1782. |
6 | Paredes S H, Gao T, Law T F, et al. Design of synthetic bacterial communities for predictable plant phenotypes[J]. PLOS Biology, 2018, 16(2). |
7 | 潘锐,熊勤学,张文英. 数字图像技术及其在作物表型研究中的应用研究进展[J]. 长江大学学报(自科版), 2016,(21): 38-41. |
Pan R, Xiong Q X, Zhang W Y. Advances in Digital Image Technology and its Application in Crop Phenotype Research[J]. Journal of Changjiang University (self-taught edition), 2016,(21): 38-41. | |
8 | 荆平平,李兵,贾宗仁,等. 基于无人机遥感的信息提取研究[J]. 测绘与空间地理信息, 2017, 40(12): 77-80. |
Jing P P, Li B, Jia Z R, et al. Research on information Extraction based on UAV Remote Sensing[J]. Geomatics & Spatial information Technology, 2017, 40(12): 77-80. | |
9 | Araus J L, Cairns J E. Field high-throughput phenotyping: the new crop breeding frontier[J]. Trends in Plant Science, 2014, 19(1): 52-61. |
10 | 李明,黄愉淇,李绪孟,等. 基于无人机遥感影像的水稻种植信息提取[J]. 农业工程学报, 2018, 34(04): 108-114. |
Li M, Huang Y Q, Li X M, et al. Rice Planting Information Extraction based on UAV Remote Sensing Image[J]. Agricultural Engineering, 2018, 34(04): 108-114. | |
11 | 张宏鸣,谭紫薇,韩文霆,等. 基于无人机遥感的玉米株高提取方法[J]. 农业机械学报, 2019, 50(05): 241-250. |
Zhang H M, Tan Z W, Han W T, et al. Corn Plant Height Extraction Method based on UAV Remote Sensing[J]. Journal of agricultural machinery, 2019, 50(05): 241-250. | |
12 | 胡鹏程. 基于无人机近感的高通量田间作物几何表型研究[D].北京:中国农业大学, 2018. |
Hu P C, Study on Geometric Phenotypes of High-throughput Field Crops based on UAV Proximity[D], Beijing: China Agricultural University, 2018. | |
13 | 牛庆林,冯海宽,杨贵军,等. 基于无人机数码影像的玉米育种材料株高和LAI监测[J]. 农业工程学报, 2018, 34(05): 73-82. |
Niu Q L, Feng H K, Yang G J, et al. Plant Height and LAI Monitoring of Maize Breeding Materials based on UAV Digital Image[J]. Agricultural Engineering, 2018, 34(05): 73-82. | |
14 | 刘帅兵,杨贵军,周成全,等. 基于无人机遥感影像的玉米苗期株数信息提取[J]. 农业工程学报, 2018, 34(22): 69-77. |
Liu S B, Yang G J, Zhou C Q, et al. Data Extraction of Maize Seedling Number based on UAV Remote Sensing Image[J]. Data Extraction of Maize Seedling Number based on UAV Remote Sensing Image, 2018, 34(22): 69-77. | |
15 | 郑二功,田迎芳,陈涛. 基于深度学习的无人机影像玉米倒伏区域提取[J]. 河南农业科学, 2018, 47(08): 155-160. |
Zheng E G, Tian Y F, Chen T. Deep Learning based UAV Image of Corn Lodging Area Extraction[J]. Journal of Henan Agricultural Sciences, 2018, 47(08): 155-160. | |
16 | 张新乐,官海翔,刘焕军,等. 基于无人机多光谱影像的完熟期玉米倒伏面积提取[J]. 农业工程学报, 2019, 35(19): 98-106. |
Zhang X L, Guan H X, Liu H J, et al. Extraction of Lodging Area of Mature Maize Based on Multi-Spectral Image of UAV[J]. Agricultural Engineering, 2019, 35(19): 98-106. | |
17 | Tanger P, Klassen S P, Mojica J P, et al. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice[J]. Scientific Reports, 2017, 7(1): 42839. |
18 | Tattaris M, Reynolds M P, Chapman S C. A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding[J]. Frontiers in Plant Science, 2016, 7(1131): 1131. |
19 | Bai G, Ge Y, Hussain W, et al. A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding[J]. Computers and Electronics in Agriculture, 2016, 128: 181-192. |
20 | Hassan M A, Yang M, Rasheed A, et al. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform[J]. Plant Science, 2019, 282: 95-103. |
21 | 毛智慧,邓磊,赵晓明,等. 利用无人机遥感提取育种小区玉米倒伏信息[J]. 中国农学通报, 2019, 35(03): 62-68. |
Mao Z H, Deng L, Zhao X M, et al. Using UAV Remote Sensing To Extract Lodging information of Maize in Breeding Plot[J]. Bulletin of Chinese Agronomy, 2019, 35(03): 62-68. | |
22 | Juliana P, Montesinoslopez O A, Crossa J, et al. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat[J]. Theoretical and Applied Genetics, 2019, 132(1): 177-194. |
23 | 赵立新,李繁茂,李彦,等. 基于无人机平台的直立作物倒伏监测研究展望[J]. 中国农机化学报, 2019, 40(11): 67-72. |
Zhao L X, Li F M, Li Y, et al. Prospect of Vertical Crop Lodging Monitoring based on UAV Platform[J]. Chinese Journal of Agricultural Mechanization, 2019, 40(11): 67-72. | |
24 | 范秀庆. 无人机免像控技术在地形图测量中的应用研究[J]. 测绘通报, 2017(S1): 66-68. |
Fan X Q. Research on the Application of UAV Image-Free Control Technology in Topographic Map Measurement[J]. Chinese Journal of Cancer Research, 2017(S1): 66-68. | |
25 | Scharr H, Pridmore T, Tsaftaris S A. Computer Vision Problems in Plant Phenotyping, CVPPP 2017: Introduction to the CVPPP 2017 Workshop Papers[C]// 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). IEEE, 2017. |
26 | Malambo L, Popescu S C, Murray S C, et al. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 31-42. |
27 | Weiss M, Baret F. Using 3D Point Clouds Derived from UAV RGB Imagery to Describe Vineyard 3D Macro-Structure[J]. Remote Sensing, 2017, 9(2): 111. |
28 | Patrick A, Li C. High Throughput Phenotyping of Blueberry Bush Morphological Traits Using Unmanned Aerial Systems[J]. Remote Sensing, 2017, 9(12): 1250. |
29 | Pircher M, Geipel J, Kusnierek K, et al. DEVELOPMENT OF A HYBRID UAV SENSOR PLATFORM SUITABLE FOR FARM-SCALE APPLICATIONS IN PRECISION AGRICULTURE[J]. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017: 297-302. |
30 | Kashyap A, Ghose D. Pursuing a time varying and moving source signal using a sensor equipped UAV[C]// 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2017. |
31 | 汪沛,罗锡文,周志艳,等. 基于微小型无人机的遥感信息获取关键技术综述[J]. 农业工程学报, 2014, 30(18): 1-12. |
Wang,Luo X W P, Zhou Z Y, et al. Research on Corn Planting information Extraction based on UAV Remote Sensing Technology[J]. Agricultural Engineering, 2014, 30(18): 1-12. | |
32 | 李晓鹏,胡鹏程,徐照丽,等. 基于四旋翼无人机快速获取大田植株图像的方法及其应用[J]. 中国农业大学学报, 2017, 22(12): 131-137. |
Li X P, Hu P C, Xu Z L, et al. Research on Corn Planting information Extraction based on UAV Remote Sensing Technology[J]. Journal of China Agricultural University, 2017, 22(12): 131-137. | |
33 | 苏瑞东. 无人机在现代农业中的应用综述[J]. 江苏农业科学, 2019, 47(21): 75-79. |
Su R D. the Application of UAV in Modern Agriculture[J]. Jiangsu Agricultural Science, 2019, 47(21): 75-79. | |
34 | 王磊,周建平,许燕,等. 农用无人机的应用现状与展望[J]. 农药, 2019, 58(09): 625-630. |
Wang L, Zhou J P, Xu Y, et al. Application Status and Prospect of Agricultural UAV[J]. Pesticide, 2019, 58(09): 625-630. | |
35 | 曾易丽,彭森. 无人机技术在现代农业生产中的优势和缺陷分析[J]. 种子科技, 2019, 37(09): 140-142. |
Ceng Y L, Peng S. Analysis of the Advantages and Disadvantages of UAV Technology in Modern Agricultural Production[J]. Seed Scicence and Technology, 2019, 37(09): 140-142. | |
36 | Skobelev P, Budaev D, Gusev N,et al. Designing Multi-agent Swarm of UAV for Precise Agriculture[M]// Highlights of Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. Springer, Cham, 2018. |
37 | Šedina Jaroslav, Pavelka K, Raeva P. UAV remote sensing capability for precision agriculture, forestry and small natural reservation monitoring[C]// SPIE Commercial + Scientific Sensing and Imaging. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2017. |
38 | Alsalam B H Y, Morton K, Campbell D,et al. Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture[C]// Aerospace Conference. IEEE, 2017. |
39 | Zhang Y, Zhang N. Imaging technologies for plant high-throughput phenotyping: a review[J]. Frontiers of Agricultural Science and Engineering, 2018, 5(4): 406-419. |
40 | 王洲,杨明欣,王新媛. 基于多传感器融合的多旋翼无人机近地面定位算法[J]. 成都信息工程大学学报, 2018, 33(03): 261-267. |
Wang Z, Yang M X, Wang X Y. Near-Ground Positioning Algorithm of Multi-Rotor UAV based on Multi-Sensor Fusion[J]. Journal of Chengdu University of information Technology, 2018, 33(03): 261-267. | |
41 | Paulus S. Measuring crops in 3D: using geometry for plant phenotyping[J]. Plant Methods, 2019, 15(1): 1-13. |
42 | Schonberger J L, Frahm J M. Structure-from-Motion Revisited[C]// IEEE Conference on Computer Vision & Pattern Recognition. IEEE, 2016:4104-4113. |
43 | 张艳超,庄载椿,肖宇钊,等. 基于运动恢复结构算法的油菜NDVI三维分布[J]. 农业工程学报, 2015, 31(17): 207-214. |
Zhang Y C, Zhuang Z C, Xiao Y Z. 3D Distribution of NDVI in Rapeseed based on Motion Recovery Structure Algorithm[J]. Agricultural Engineering, 2015, 31(17): 207-214. | |
44 | 黄霞,郑顺义,桂力,等. 基于点云的谷粒高通量表型信息自动提取技术[J]. 农业机械学报, 2018, 49(04): 257-264. |
Huang X, Zheng S Y, Gui L, et al. Automatic Extraction of High Throughput Phenotype information From Grain based on Point Cloud[J]. Journal of agricultural machinery, 2018, 49(04): 257-264. | |
45 | Irschara A, Zach C, Frahm J M,et al. From structure-from-motion point clouds to fast location recognition[C]// 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA. IEEE, 2009. |
46 | 苗艳龙, 仇瑞承, 高阳,等. 基于车载三维激光雷达的玉米点云滤波研究[C]// 2018中国作物学会学术年会论文摘要集. 0. |
Miao Y L, Chou R C, Gao Y, et al. Research on Corn Point Cloud Filter based on Vehicle-Mounted 3D Lidar[C].//.2018 Chinese Crop Society Academic Annual Conference Paper Abstract Collection. | |
47 | 史维杰,张吴平,郝雅洁,等. 基于视觉三维重建的作物表型分析[J]. 湖北农业科学, 2019, 58(16): 125-128. |
Shi W J, Zhang W P, Hao Y J, et al. Crop Phenotype Analysis based on Visual Three-Dimensional Reconstruction[J]. Hubei Agricultural Sciences, 2019, 58(16): 125-128. | |
48 | Fawcett D, Azlan B, Hill T C, et al. Unmanned aerial vehicle (UAV) derived structure-from-motion photogrammetry point clouds for oil palm (Elaeis guineensis) canopy segmentation and height estimation[J]. International Journal of Remote Sensing, 2019: 1-23. |
49 | Matese A, Gennaro S F D, Berton A. Assessment of a canopy height model CHM in a vineyard using UAV-based multispectral imaging[J]. International Journal of Remote Sensing, 2017, 38(8): 2150-2160. |
50 | 翁杨,曾睿,吴陈铭,等. 基于深度学习的农业植物表型研究综述[J]. 中国科学:生命科学, 2019, 49(06): 698-716. |
Weng Y, Ceng R, Wu C M, et al. a Review of Studies on Agricultural Plant Phenotypes based on Deep Learning[J]. Science in China: Life Science, 2019, 49(06): 698-716. | |
51 | Cooper S D, Roy D P, Schaaf C B, et al. Examination of the Potential of Terrestrial Laser Scanning and Structure-from-Motion Photogrammetry for Rapid Nondestructive Field Measurement of Grass Biomass[J]. Remote Sensing, 2017, 9(6): 531. |
52 | Q Q, N S, H B, et al. Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a "Phenomobile"[J]. Frontiers in plant science, 2019, 10: 554. |
53 | He J Q, Harrison R J, Li B. A novel 3D imaging system for strawberry phenotyping[J]. Plant Methods, 2017, 13(1): 93. |
54 | Chaudhury A, Barron J L. Machine Vision System for 3D Plant Phenotyping[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(6). |
55 | 刘治开,牛亚晓,王毅,等. 基于无人机可见光遥感的冬小麦株高估算[J]. 麦类作物学报, 2019, 39(07): 859-866. |
Liu Z K, Niu Y X, Wang Y, et al. Estimation of Plant Height of Winter Wheat based on Visible Remote Sensing of UAV[J]. Journal of Triticeae Crops, 2019, 39(07): 859-866. | |
56 | Watanabe K, Guo W, Arai K, et al. High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling[J]. Frontiers in Plant Science, 2017, 8: 421. |
57 | Madec S, Baret F, De Solan B, et al. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates[J]. Frontiers in Plant Science, 2017, 8: 2002. |
58 | Lottes P, Behley J, Chebrolu N, et al. Robust joint stem detection and crop breed classification using image sequences for plant specific treatment in precision farming[J]. Journal of Field Robotics, 2019. |
59 | Bierman A, Laplumm T, Cadle-Davidson L, et al. A High-Throughput Phenotyping System Using Machine Vision to Quantify Severity of Grapevine Powdery Mildew[J]. Plant Phenomics, 2019, 2019: 9209727. |
60 | 杨国国,鲍一丹,刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报, 2017, 33(06): 156-162. |
Yang G G, Bao Y D, Liu Z Y. Localization and Identification of Pests in Tea Garden based on Image Significance Analysis and Convolutional Neural Network[J]. Agricultural Engineering, 2017, 33(06): 156-162. | |
61 | Ghosal S, Zheng B, Chapman S C, et al. A Weakly Supervised Deep Learning Framework for Sorghum Head Detection and Counting[J]. Plant Phenomics, 2019, 2019: 1525874. |
62 | Yang W, Yang C, Hao Z, et al. Diagnosis of Plant Cold Damage Based on Hyperspectral Imaging and Convolutional Neural Network[J]. IEEE Access, 2019, 7: 118239-118248. |
63 | Reiman D, Metwally A, Yang Dai. Using convolutional neural networks to explore the microbiome[J]. Conf Proc IEEE Eng Med Biol Soc, 2017, 2017:4269-4272. |
64 | Zhou Y, Xu T, Zheng W, et al. Classification and recognition approaches of tomato main organs based on DCNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 219-226. |
65 | Fuentes A, Im D H, Yoon S, et al. Spectral Analysis of CNN for Tomato Disease Identification[C]. Berlin: Springer,2017. |
66 | Mardanisamani S, Maleki F, Kassani S H, et al. Crop Lodging Prediction from UAV-Acquired Images of Wheat and Canola using a DCNN Augmented with Handcrafted Texture Features.[J]. arXiv: Computer Vision and Pattern Recognition, 2019. |
67 | Chen F, Jahanshahi M R. NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Naïve Bayes Data Fusion[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4392-4400. |
68 | 苏伟,蒋坤萍,闫安,等. 基于无人机遥感影像的育种玉米垄数统计监测[J]. 农业工程学报, 2018, 34(10): 92-98. |
Su W, Jiang K P, Yan A, et al. Statistical Monitoring of Ridge Number of Breeding Maize based on Remote Sensing Image of UAV[J]. Agricultural Engineering, 2018, 34(10): 92-98. | |
69 | 和兴华. 基于卷积神经网络的玉米冠层图像分割与生育期鉴定方法[D]. 江西农业大学, 2018. |
He X H, Image Segmentation and Growth Period Identification of Maize Canopy based on Convolutional Neural Network[D],Nanchang: Jiangxi Agricultural University,2018. | |
70 | Toda Y, Okura F. How Convolutional Neural Networks Diagnose Plant Disease[J]. Plant Phenomics, 2019, 2019: 9237136. |
71 | 李旭冬,叶茂,李涛. 基于卷积神经网络的目标检测研究综述[J]. 计算机应用研究, 2017, 34(10): 2881-2886. |
Li X D, Ye M, Li T. a Review of Target Detection based on Convolutional Neural Network[J]. Computer application research, 2017, 34(10): 2881-2886. | |
72 | 许必宵,宫婧,孙知信. 基于卷积神经网络的目标检测模型综述[J]. 计算机技术与发展, 2019,(11): 1-8. |
Xu B X, Gong J, Sun Z X. a Review of Target Detection Models based on Convolutional Neural Network[J]. Computer technology and development, 2019,(11): 1-8. | |
73 | 常亮,邓小明,周明全,等. 图像理解中的卷积神经网络[J]. 自动化学报, 2016, 42(9): 1300-1312. |
Chang L, Deng X, Zhou M, et al. Convolutional Neural Network in Image Comprehension[J]. Acta Automatica Sinica, 2016, 42(9): 1300-1312. | |
74 | Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. 2012,25(2). |
75 | Oquab M, Bottou Léon, Laptev I,et al. Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks[C]// Computer Vision & Pattern Recognition. IEEE, 2014. |
76 | Hussain M, Bird J J, Faria D R. A Study on CNN Transfer Learning for Image Classification[C]// UK Workshop on Computational Intelligence. Springer, Cham, 2018. |
77 | Feng Y, Zeng S, Yang Y,et al. Study on the Optimization of CNN Based on Image Identification[C]// 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). IEEE Computer Society, 2018. |
78 | Liu K, Zhou Q, Wenbin W U, et al. Estimating the crop leaf area index using hyperspectral remote sensing[J]. Journal of Integrative Agriculture, 2016, 15(2): 475-491. |
79 | Forsmoo J, Anderson K, Macleod C J A, et al. Drone‐based structure‐from‐motion photogrammetry captures grassland sward height variability[J]. Journal of Applied Ecology, 2018, 55(6): 2587-2599. |
80 | 王凌,赵庚星,朱西存,等. 山丘区苹果树花期冠层反射率的定量遥感反演[J]. 应用生态学报, 2012, 23(08): 2233-2241. |
Wang L, Zhao G X, Zhu X C, et al. Quantitative Remote Sensing inversion of Canopy Reflectance in Apple Tree Flowering Period in Mountain Area[J]. Journal of applying ecology, 2012, 23(08): 2233-2241. | |
81 | 宗泽,张雪,郭彩玲,等. 基于骨架提取算法的作物表型参数提取方法[J]. 农业工程学报, 2015, 31(S2): 180-185. |
Zong Z, Zhang X, Guo C L, et al. Crop Phenotypic Parameters Extraction Method based on Skeleton Extraction Algorithm[J]. Agricultural Engineering, 2015, 31(S2): 180-185. | |
82 | 梁辉,刘汉湖,何敬. 基于无人机高光谱的水稻光合性能监测系统应用[J]. 农机化研究, 2020, 42(07): 214-218. |
Liang H, Liu H H, He J, et al. Application of Rice Photosynthetic Performance Monitoring System based on UAVs[J]. Journal of Agricultural Mechanization Research, 2020, 42(07): 214-218. | |
83 | 张经纬,贡亮,黄亦翔,等. 基于随机森林算法的黄瓜种子腔图像分割方法[J]. 农机化研究, 2017, 39(10): 163-168. |
Zhang J W, Gong L, Huang Y X, et al. Image Segmentation Method of Cucumber Seed Cavity based on Random Forest Algorithm[J]. Journal of Agricultural Mechanization Research, 2017, 39(10): 163-168. | |
84 | 刘斌,史云,吴文斌,等. 基于无人机遥感可见光影像的农作物分类[J]. 中国农业资源与区划, 2019, 40(08): 55-63. |
Liu B, Shi Y, Wu W B, et al. Crop Classification based on Visible Image of UAV[J]. Agricultural resources and regionalization in China, 2019, 40(08): 55-63. | |
85 | 李寒,张漫,高宇,等. 温室绿熟番茄机器视觉检测方法[J]. 农业工程学报, 2017, 33(S1): 328-334. |
Li H, Zhang M, Gao Y, et al. Detecting Method of Greenhouse Green Ripe Tomato using Machine Vision[J]. Agricultural Engineering, 2017, 33(S1): 328-334. | |
86 | 高林,杨贵军,李红军,等. 基于无人机数码影像的冬小麦叶面积指数探测研究[J]. 中国生态农业学报, 2016, 24(09): 1254-1264. |
Gao L, Yang G J, Li H J, et al. Detection of Leaf Area Index of Winter Wheat based on Digital Image of UAV[J]. Chinese Journal of Eco-Agriculture, 2016, 24(09): 1254-1264. | |
87 | 杨琦,叶豪,黄凯,等. 利用无人机影像构建作物表面模型估测甘蔗LAI[J]. 农业工程学报, 2017, 33(08): 104-111. |
Yang Q, Ye H, Huang K. Constructed Crop Surface Models to estimate Sugarcane LAI using Drone Images[J]. Agricultural Engineering, 2017, 33(08): 104-111. | |
88 | 韩文霆,李广,苑梦婵,等. 基于无人机遥感技术的玉米种植信息提取方法研究[J]. 农业机械学报, 2017, 48(01): 139-147. |
Han W T, Li G, Yuan M C, et al. Research on Corn Planting information Extraction based on UAV Remote Sensing Technology[J]. Journal of agricultural machinery, 2017, 48(01): 139-147. | |
89 | Coombes M, Eaton W, Chen W. Machine Vision for UAS Ground Operations[J]. Journal of Intelligent & Robotic Systems, 2017: 1-20. |
90 | 程雪,贺炳彦,黄耀欢,等. 基于无人机高光谱数据的玉米叶面积指数估算[J]. 遥感技术与应用, 2019, 34(04): 775-784. |
Cheng X, He B Y, Huang Y H, et al. Estimation of Maize Leaf Area index based on Uas Hyperspectral Data[J]. Remote Sensing Technology and Application, 2019, 34(04): 775-784. | |
91 | 白继伟,赵永超,张兵,等. 基于包络线消除的高光谱图像分类方法研究[J]. 计算机工程与应用, 2003(13): 88-90. |
Bai J W, Zhao Y C, Zhang B, et al. Classification of Hyperspectral Images based on Envelope Elimination[J]. Computer Engineering and Application, 2003(13): 88-90. | |
92 |
杜培军,夏俊士,薛朝辉,等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2): 236-256. DOI: 10.11834/jrs.20165022
doi: 10.11834/jrs.20165022 |
Du P J, Xia J S, Xue Z H, et al. Advances in Classification of Hyperspectral Remote Sensing Images[J]. Journal of Remote Sensing; Journal of Remote Sensing, 2016, 20(2): 236-256.
doi: 10.11834/jrs.20165022 |
|
93 | 周龙飞,张云鹤,成枢,等. 不同生育期倒伏胁迫下玉米叶面积指数高光谱响应解析[J]. 遥感技术与应用, 2019, 34(04): 766-774. |
Zhou L F, Zhang Y H, Cheng S, et al. Response Analysis of Leaf Area index (LAI) Hyperspectral in Maize Under Lodging Stress At Different Growth Stages[J]. Remote Sensing Technology and Application, 2019, 34(04): 766-774. | |
94 | 赵晓庆,杨贵军,刘建刚,等. 基于无人机载高光谱空间尺度优化的大豆育种产量估算[J]. 农业工程学报, 2017, 33(01): 110-116. |
Zhao X Q, Yang G J, Liu J G, et al. Estimation of Soybean Breeding Yield based on UAV-borne Hyperspectral Spatial Scale Optimization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(01): 110-116. | |
95 | 孙刚,黄文江,陈鹏飞,等. 轻小型无人机多光谱遥感技术应用进展[J]. 农业机械学报, 2018, 49(03): 1-17. |
Sun G, Huang W J, Chen P F, et al. Application Progress of Multi-spectral Remote Sensing Technology for Light and Small UAV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(03): 1-17. | |
96 | 兰玉彬,邓小玲,曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业, 2019, 1(02): 1-19. |
Lan Y B, Deng X L, Zeng G L, et al. Advances in the Application of UAV Remote Sensing in the Diagnosis of Crop Diseases, Insect Pests and Weeds[J]. intelligent agriculture, 2019, 1(02): 1-19. |
[1] | Jia He, Laigang Wang, Yan Guo, Yan Zhang, Xiuzhong Yang, Ting Liu, Hongli Zhang. Estimating the Leaf Area Index of Maize based on Unmanned Aerial Vehicle Multispectral Remote Sensing [J]. Journal of Agricultural Big Data, 2021, 3(4): 20-28. |
[2] | Guohui Ding,Hao Xu,Mingxing Wen,Jiawei Chen,Xiue Wang,Ji Zhou. Developing cost-effective and low-altitude UAV aerial phenotyping and automated phenotypic analysis to measure key yield-related traits for bread wheat [J]. Journal of Agricultural Big Data, 2019, 1(2): 19-31. |
|