农业大数据学报 ›› 2020, Vol. 2 ›› Issue (1): 53-59.doi: 10.19788/j.issn.2096-6369.200107

• 专刊——区域性农业大数据发展 • 上一篇    下一篇

河南省秋季作物空间分布“一张图”遥感制作

王来刚(), 郭燕, 王利军, 贺佳, 张彦, 杨秀忠, 张红利, 郑国清()   

  1. 河南省农业科学院农业经济与信息研究所,郑州 450002
  • 收稿日期:2019-11-25 出版日期:2020-03-26 发布日期:2020-06-02
  • 通讯作者: 郑国清 E-mail:wlaigang@sina.com;2217859644@qq.com
  • 作者简介:王来刚,男,博士,研究方向:农业遥感应用;E-mail: wlaigang@sina.com
  • 基金资助:
    河南省重大科技专项(171100110600);河南省农业科学院自主创新项目(2019ZC46)

Developing a Combined Map of the Spatial Distribution of Autumn Crops in Henan Province Using Multi-source Remote Sensing

Laigang Guo Yan Wang Lijun He Jia Yang Xiuzhong Zhang Hongli Zheng Guoqing Wang()   

  1. Institute of Agricultural Economic and Information, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
  • Received:2019-11-25 Online:2020-03-26 Published:2020-06-02

摘要: 目的

作物空间分布“一张图”是我国农情遥感监测业务的重要工作,监测结果可为农业生产定量化、科学化管理提供基础数据。

方法

本研究在多年农作物种植面积遥感监测的基础上,根据河南省地形地貌特征和作物种植特点,优选不同区域的遥感数据和分类方法,采用Sentinel-2、Landsat 8-OLI、GF-6 WFV等中高分辨率遥感数据,制作了2019年河南省玉米、花生、水稻和大豆等秋季主要作物空间分布“一张图”,并基于地面调查数据进行了监测精度分析。

结果

河南省秋季作物主要包括玉米、花生、水稻和大豆,玉米种植面积最大,花生次之,秋季作物种植结构比较复杂,主要包括玉米单作、玉米-花生-大豆混作、水稻单作等种植模式。“一张图”总体精度和Kapaa系数分别为86.13%和0.83,基本符合省级尺度作物种植面积监测业务工作要求。

结论

本研究从遥感数据源优选方案、作物分类方法、地面调查和精度评价等方面进行了深入的探讨,将小尺度作物种植结构遥感监测从技术研究层面拓展到大尺度业务应用层面,为我国大尺度作物空间分布“一张图”业务化遥感制作提供技术支撑。

关键词: 一张图, 遥感, 作物空间分布, 河南省, 农业大数据, 大数据, 智慧农业

Abstract: Objective

Mapping the spatial distribution of all crops, using remote sensing, is important for monitoring agricultural production in China. The classification results provide basic data for quantitative and scientific management.

Method

The spectral characteristics of different autumn crops are known from years of experience using remote sensing to monitor crop planting areas. A combined map of crop spatial distribution in Henan Province in 2019 was made using multi-source remote sensing and different classification methods, based on topographic and geomorphic characteristics and crop planting structures. The classification crops include corn, peanuts, rice and soybeans, and the multi-source images include Sentinel-2, Landsat 8-OLI, GF6 WFV with different spatial resolutions. The accuracy of the classification results was verified using ground samples and survey data.

Result

The planting structure of autumn crops is complicated, including single crops of corn and rice, as well as mixed crops of corn, peanuts and soybeans. In the study area, corn was planted over the largest area, followed by peanuts. The overall accuracy and Kappa coefficient of the combined map were 86.13% and 0.83, respectively, which met the basic requirements for monitoring crops at provincial scale.

Conclusion

The paper addresses the optimization of remote sensing data sources, classification methods, ground surveys and precision verification approaches. In this study, the technical ability to monitor crops using remote sensing of planting structures was tested in a large-scale business application. It offers technical support for using remote sensing to produce a combined map at large scale.

Key words: one map, remote sensing, crops spatial distribution, Henan Province, agricultural big data, big data, smart agriculture

中图分类号: 

  • S-1