农业大数据学报 ›› 2021, Vol. 3 ›› Issue (3): 62-75.doi: 10.19788/j.issn.2096-6369.210307

• 研究综述 • 上一篇    下一篇

基于无人机高通量植物表型大数据分析及应用研究综述

袁培森1(), 薛铭家1, 熊迎军1, 翟肇裕2, 徐焕良1()   

  1. 1.南京农业大学人工智能学院,南京 210095
    2.马德里理工大学技术工程和电信系统高级学院,马德里 28040
  • 收稿日期:2020-03-11 出版日期:2021-09-26 发布日期:2020-10-30
  • 通讯作者: 徐焕良 E-mail:peiseny@njau.edu.cn;huanliangxu@njau.edu.cn
  • 作者简介:袁培森,博士,讲师,研究方向:智能信息、海量数据处理与分析研究;E-mail:peiseny@njau.edu.cn
  • 基金资助:
    国家自然科学基金项目(61502236);中央高校基本科研业务费专项资金项目(KJQN201651);大学生创新创业训练专项计划项目(S20190025)

Analysis and Application of High-throughput Plant Phenotypic Big Data Collected from Unmanned Aerial Vehicles

Peisen Yuan1(), Mingjia Xue1, Yingjun Xiong1, Zhaoyu Zhai2, Huanliang Xu1()   

  1. 1.College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
    2.Superior School of Technical Engineering and Telecommunication Systems, Technical University of Madrid, Madrid 28040, Spain
  • Received:2020-03-11 Online:2021-09-26 Published:2020-10-30
  • Contact: Huanliang Xu E-mail:peiseny@njau.edu.cn;huanliangxu@njau.edu.cn

摘要:

植物表型是指基因和环境因素决定或影响的作物物理、生理、生化特征和性状。准确和快速的获取植物在各种不同环境条件下的表型信息,从而挖掘其基因组的遗传和表现规律,可有效推动有关基因组与表型信息关联性研究。无人机高通量植物表型平台凭借无人机机动灵活的特点,适合于农作物田间环境中的植物表型数据获取,具有数据获取效率高和成本低等优势,借助于图像、高光谱、激光雷达等先进传感器技术,为高效获取各类植物表型数据提供了可行的途径;与此同时,快速发展的大数据技术和智能数据分析技术为无人机所获取的植物表型图像提供有效的分析处理方法和技术。在此背景下,基于无人机平台的高通量植物表型分析,为研究田间作物表型信息提供了重要的方法和工具。本文综述了国内外无人机高通量作物表型大数据分析的最新研究成果,就其研究原理、相关算法、过程、关键技术及应用等进行总结与分析,重点讨论了应用于无人机高通量植物表型大数据分析相关的大数据处理与智能分析技术,重点分析了植物株高获取、叶面积指数、植物病害等典型的表型分析需求,并就其应用前景进行了总结和展望。

关键词: 表型大数据, 无人机, 高通量, 植物表型分析

Abstract:

Plant phenotypes refer to the physical, physiological and biochemical characteristics and traits that are determined or influenced by genes and environmental factors. Accurate and rapid access to plant phenotypic information under different environmental conditions, and the analysis of the genetic and performance patterns of their genomes, can effectively promote research on the correlation between genomic and phenotypic information. The Unmanned Aerial Vehicle (UAV) high-throughput plant phenotyping platform is suitable for acquiring plant phenotypic data in field environments owing to the UAV’s mobility and flexibility, and it has the great advantages of a high data acquisition efficiency and low cost. With the help of advanced sensor technologies, such as hyperspectral imaging and LIDAR, the UAV provides a feasible way to efficiently acquire plant phenotypic data. Effective analyses and processing methods and techniques for plant phenotypic data acquired by UAVs must be employed. Thus, high-throughput plant phenotypic analyses based on UAV platforms provides an important tool for studying plant phenotypic information from the field. This paper summarizes and analyzes the latest research results of UAV-based high-throughput crop phenotyping using big data analysis technology and artificial intelligence, as well as its research principles, relevant algorithms, processes, key technologies and applications. The main focus is on big data processing and intelligent analysis techniques related to UAV-based high-throughput plant phenotype big data and to the analysis of typical phenotypes, such as plant height, leaf area index, and plant diseases. We analyzed the current research needs and provide both a summary and outlook on related applications.

Key words: phenotypic big data, unmanned aerial vehicle, high-throughput, plant phenotyping

中图分类号: 

  • S-3