Journal of Agricultural Big Data ›› 2025, Vol. 7 ›› Issue (3): 294-306.doi: 10.19788/j.issn.2096-6369.000101
Previous Articles Next Articles
KANG JiChang(), ZHAO LianJun*(
)
Received:
2025-02-05
Accepted:
2025-04-21
Online:
2025-09-26
Published:
2025-09-28
Contact:
ZHAO LianJun
About author:
KANG JiCang,E-mail: kangjichang2009@163.com.
KANG JiChang, ZHAO LianJun. Wheat Pest Detection Based on PSA-YOLO11n[J].Journal of Agricultural Big Data, 2025, 7(3): 294-306.
Table 3
Comparison results on the IP102 dataset"
Model | P% | R% | mAP@0.5% | Params/M | Weights/M | FPS/f*s-1 |
---|---|---|---|---|---|---|
Faster R-CNN | 85.8 | 75.7 | 77.28 | 136.77 | 89.60 | 21.70 |
RetinaNet | 86.1 | 75.3 | 79.50 | 19.81 | 80.00 | 38.76 |
YOLOv5s | 88.5 | 76.3 | 86.00 | 7.20 | 13.00 | 112.4 |
YOLOv8n | 84.2 | 75.7 | 83.70 | 3.16 | 5.94 | 128.2 |
YOLOv10n | 83.8 | 74.8 | 82.50 | 2.70 | 5.46 | 130.2 |
YOLO11n | 89.5 | 77.1 | 88.30 | 2.60 | 5.35 | 138.9 |
PSA-YOLO11n | 89.7 | 77.2 | 89.10 | 2.58 | 5.34 | 137.5 |
[1] | HUSSAIN D, ASRAR M, KHALID B, et al. Insect pests of economic importance attacking wheat crop (Triticum aestivum L.) in Punjab, Pakistan. International Journal of Tropical Insect Science, 2022, 42(1):9-20. |
[2] | ZHANG Q, MEN X, HUI C, et al. Wheat yield losses from pests and pathogens in China. Agriculture, Ecosystems & Environment, 2022, 326:107821. |
[3] | FAROOK U B, KHAN Z H, AHAD I, et al. A review on insect pest complex of wheat (Triticum aestivum L.). Journal of Entomology and Zoology Studies, 2019, 7(1):1292-1298. |
[4] |
ZHANG M, WANG X, KANG M, et al. A novel agricultural data sharing mode based on rice disease identification. Journal of Agricultural Big Data, 2023, 5(4):13-23.
doi: 10.19788/j.issn.2096-6369.230402 |
[5] | SABANCI K, ASLAN M F, ROPELEWSKA E, et al. A novel convolutional-recurrent hybrid network for sunn pest-damaged wheat grain detection. Food Analytical Methods, 2022, 15(6):1748-1760. |
[6] | LI C, CHEN S, MA Y, et al. Wheat pest identification based on deep learning techniques// 2024 IEEE 7th International Conference on Big Data and Artificial Intelligence (BDAI). IEEE, 2024:87-91. |
[7] |
XIAO J, CHEN L, PAN F, et al. Application method affects pesticide efficiency and effectiveness in wheat fields. Pest Management Science, 2020, 76(4):1256-1264.
doi: 10.1002/ps.5635 pmid: 31595654 |
[8] | TUDOR V C, STOICEA P, CHIURCIU I A, et al. The use of fertilizers and pesticides in wheat production in the main European Countries. Sustainability, 2023, 15(4):3038. |
[9] | ARUN R A, UMAMAHESWARI S. Effective and efficient multi-crop pest detection based on deep learning object detection models. Journal of Intelligent & Fuzzy Systems, 2022, 43(4):5185-5203. |
[10] | LI R, WANG R, ZHANG J, et al. An effective data augmentation strategy for CNN-based pest localization and recognition in the field. IEEE access, 2019, 7:160274-160283. |
[11] |
GUO B, WANG BB, ZHANG ZH, et al. Improved YOLOv3 crop target detection algorithm. Journal of Agricultural Big Data, 2024, 6(1):40-47.
doi: 10.19788/j.issn.2096-6369.000006 |
[12] | ZHA M, QIAN W, YI W, et al. A lightweight YOLOv4-Based forestry pest detection method using coordinate attention and feature fusion. Entropy, 2021, 23(12):1587. |
[13] | LIU J, WANG X, MIAO W, et al. Tomato pest recognition algorithm based on improved YOLOv4. Frontiers in Plant Science, 2022, 13:814681. |
[14] | YANG S, XING Z, WANG H, et al. Maize-YOLO: a new high- precision and real-time method for maize pest detection. Insects, 2023, 14(3):278. |
[15] | SUN H, NICHOLAUS I T, FU R, et al. YOLO-FMDI: A lightweight YOLOv8 focusing on a multi-scale feature diffusion interaction neck for tomato pest and disease detection. Electronics, 2024, 13(15):2974. |
[16] | DONG Q, SUN L, HAN T, et al. PestLite: A novel YOLO-based deep learning technique for crop pest detection. Agriculture, 2024, 14(2):228. |
[17] | ZHOU X, WEN L, JIE B, et al. Real-time detection algorithm of expanded feed image on the water surface based on improved YOLOv11. Smart Agriculture, 2024, 6(6):155-167. |
[18] | SONG X, CAO S, ZHANG J, et al. Steel surface defect detection algorithm based on YOLOv8. Electronics, 2024, 13(5):988. |
[19] | WANG C Y, YEH I H, LIAO H Y M. Yolov9: Learning what you want to learn using programmable gradient information. arXiv preprint arXiv:2402.13616, 2024. |
[20] | WANG A, CHEN H, LIU L, et al. Yolov10: Real-time end-to-end object detection. arXiv preprint arXiv:2405.14458, 2024. |
[21] | DU S, ZHANG B, ZHANG P, et al. An improved bounding box regression loss function based on CIOU loss for multi-scale object detection// 2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML). IEEE, 2021:92-98. |
[22] | LI C, LI L, GENG Y, et al. Yolov6 v3. 0: A full-scale reloading. arXiv preprint arXiv:2301.05586, 2023. |
[23] |
SU J, QIN Y, JIA Z, et al. MPE-YOLO: enhanced small target detection in aerial imaging. Scientific Reports, 2024, 14(1):17799.
doi: 10.1038/s41598-024-68934-2 pmid: 39090172 |
[24] | XUE C, XIA Y, WU M, et al. EL-YOLO: An efficient and lightweight low-altitude aerial objects detector for onboard applications. Expert Systems with Applications, 2024, 256:124848. |
[25] | WU X, ZHAN C, LAI Y K, et al. Ip102: A large-scale benchmark dataset for insect pest recognition// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019:8787-8796. |
[26] | GEVORGYAN Z. SIoU loss: More powerful learning for bounding box regression. arXiv preprint arXiv:2205.12740, 2022. |
[27] | YANG Z, WANG X, LI J. EIoU:an improved vehicle detection algorithm based on vehiclenet neural network// Journal of physics: Conference series. IOP Publishing, 2021, 1924(1):012001. |
[28] | TONG Z, CHEN Y, XU Z, et al. Wise-IoU: Bounding box regression loss with dynamic focusing mechanism. arXiv preprint arXiv:2301.10051, 2023. |
[29] | QIN H, WANG J, MAO X, et al. An improved faster R-CNN method for landslide detection in remote sensing images. Journal of Geovisualization and Spatial Analysis, 2024, 8(1):2. |
[30] | YANG Z, LIU Y. A steel surface defect detection method based on improved RetinaNet. Scientific Reports, 2025, 15(1):6045. |
[31] | WANG D, HE D. Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning. Biosystems Engineering, 2021, 210:271-281. |
[32] | LIU C, SUN Y, YANG J, et al. Grape recognition and localization method based on 3C-YOLOv8n and depth camera. Smart Agriculture, 2024, 6(6):121-131. |
[33] | GUAN S, LIN Y, LIN G, et al. Real-time detection and counting of wheat spikes based on improved YOLOv10. Agronomy, 2024, 14(9):1936. |
[34] | SAPKOTA R, MENG Z, CHURUVIJA M, et al. Comprehensive performance evaluation of YOLOv12, YOLO11, YOLOv10, YOLOv9 and YOLOv8 on detecting and counting fruitlet in complex orchard environments. arXiv:2407.12040, 2024. |
[1] | WANG JianLi, QU MingShan, LIU ZhenYu, SHI KaiLi, ZHANG ShiRui, LI GuangWei, ZHANG ZhongLili. Multispectral Image Dataset of Wheat Full Growth Cycle in Beijing Province in 2024 [J]. Journal of Agricultural Big Data, 2025, 7(1): 126-131. |
[2] | LIU Hong, DOU JingWen, WANG Yue, LIAO Yong, LIU XiaoLei, LI XinYun, ZHAO ShuHong, FU YuHua. A Multi-Omics Dataset for Functional Gene Mining in Animals [J]. Journal of Agricultural Big Data, 2025, 7(1): 96-106. |
[3] | QIN JiaLe, YUAN JiangHao, SONG GuoZhu, YAO HongXun, GUO LeiFeng, WANG XiaoLi. Image Dataset of Wheat, Corn, and Rice Seedlings in Heilongjiang Province in 2022 [J]. Journal of Agricultural Big Data, 2024, 6(4): 558-563. |
[4] | YUAN JiangHao, ZHENG ZuoJun, CHU ChangMing, YAO HongXun, LIU HaiLong, GUO LeiFeng. Rice Yield Prediction UAV Remote Sensing Image Dataset of Heilongjiang Province in 2023 [J]. Journal of Agricultural Big Data, 2024, 6(4): 546-551. |
[5] | YANG QiMing, SHI DanYan, SHEN MengLu, HUANG Ying. Panel Data Set of The National Model Society of Specialized Farmers' Cooperatives from 2014 to 2020 [J]. Journal of Agricultural Big Data, 2024, 6(1): 94-102. |
[6] | CUI Yi, ZHANG Ying, ZHAO QiRan. Applications and Prospects of Electronic Questionnaire Survey System: Survey Solution [J]. Journal of Agricultural Big Data, 2023, 5(4): 81-85. |
[7] | YU JunWei, ZHAI FuPin. Image Dataset of Stored Grain Pests by Henan University of Technology [J]. Journal of Agricultural Big Data, 2023, 5(2): 85-90. |
[8] | WANG Kexiao, ZHOU Rui, LI Bo. Biochemistry Indexes and Reflectance Spectra Datasets of Rape Pod Pericarp at Different Maturities [J]. Journal of Agricultural Big Data, 2023, 5(1): 29-33. |
[9] | HU Tianci, WANG Ruili, JIANG Chengxiang, BAI Tao, HU Lin, WANG Xiaoli, GUO Leifeng. 2022 Inner Mongolia UAV Potato Image Dataset [J]. Journal of Agricultural Big Data, 2023, 5(1): 40-45. |
[10] | Zonge He, Ziyi Kong, Gang Geng, Shidong Zhang, Ji Yuan. A Dataset of Predacious Natural Enemies in the Special Habitat in Delingha, Qinghai Province from 2018 to 2021 [J]. Journal of Agricultural Big Data, 2022, 4(4): 94-101. |
[11] | Xiaogui Zhou, Meijun Tang, Huawei Guo, Huiming Yao, Qiang Xiao. A Dataset of Coccinellidae Species and Population Dynamics in Tea Gardens in Hangzhou, Zhejiang Province from 2019 to 2021 [J]. Journal of Agricultural Big Data, 2022, 4(4): 52-59. |
[12] | Jiale Lv, Zhenhui Wang, Xuenong Xu. Survey and Preservation Methods of Natural Enemy Resources in Agroecosystems [J]. Journal of Agricultural Big Data, 2022, 4(4): 5-15. |
[13] | Xianghe Zhang, Tingting Liu, Xiaoli Wang, Lin Hu, Jingchao Fan, Linlin Jiang. Near-infrared Spectral Data Set of Apple Quality and Disease of Fuji Apple in Liaoning Province [J]. Journal of Agricultural Big Data, 2022, 4(2): 30-35. |
[14] | Gaofei, WangXiaoli, HuLin, FanJingchao, LiuTingting, YanShen, CaoShanshan. Spectra and Images of Fuji, Huahong and Gala Apple Leaves in Xingcheng, Liaoning Province, in 2016 [J]. Journal of Agricultural Big Data, 2022, 4(1): 109-113. |
[15] | Jia He, Laigang Wang, Yan Guo, Yan Zhang, Xiuzhong Yang, Ting Liu, Hongli Zhang. Estimating the Leaf Area Index of Maize based on Unmanned Aerial Vehicle Multispectral Remote Sensing [J]. Journal of Agricultural Big Data, 2021, 3(4): 20-28. |
|