Journal of Agricultural Big Data ›› 2021, Vol. 3 ›› Issue (3): 33-44.doi: 10.19788/j.issn.2096-6369.210304
Previous Articles Next Articles
Ayitula Maimaitizunong1(), Shuai Yanju2, Haodong Wei3, Zhen He4, Qinxi Xiao2, Qiong Hu4, Baodong Xu3, Liangzhi You5, Cougui Cao2, Lin Ling6()
Received:
2021-06-10
Online:
2021-09-26
Published:
2021-12-22
Contact:
Lin Ling
E-mail:m.ayitula@webmail.hzau.edu.cn;liz@hzau.edu.cn
CLC Number:
Ayitula Maimaitizunong, Shuai Yanju, Haodong Wei, Zhen He, Qinxi Xiao, Qiong Hu, Baodong Xu, Liangzhi You, Cougui Cao, Lin Ling. Evaluation of Green Development of Rice-Based Cropping Systems Using Remote Sensing Data and the DNDC Model: Case Study of Qianjiang City[J].Journal of Agricultural Big Data, 2021, 3(3): 33-44.
Table 1
Site information of experiments and data sources for rice-based cropping systems"
序号 | 地点 | 经纬度 | 均温和降水量 | 模式 | 处理 | 数据来源 |
---|---|---|---|---|---|---|
Ⅰ | 枣阳 | 32°10′N,112°10′ E | 15.5℃; 500~1000mm | 稻麦模式(RW) | N0C0、N0C1、N0C2、N1C0、N1C1、N1C2、N2C0、N2C1、N2C2 | Hu et al., 2019[ |
Ⅱ | 武穴 | 29°51′N,115°33′ E | 17.8℃; 1361mm | 稻麦模式(RW) | CTNS、CTS、 NTNS、NTS | Zhang et al., 2015[ |
Ⅲ | 武穴 | 30°01′N,115°74′ E | 17.5℃; 1132~1742mm | 稻油模式(RR) | CF、FWI、RFL | Xu et al., 2016[ |
Ⅳ | 潜江 | 30°39′N,113°11′ E | 16.1℃; 1100mm | 稻虾模式(RC)&稻闲模式(RF) | SF、SNF、NS、 NSNF、S、NS | 孙自川, 2018[ |
Ⅴ | 武汉 | 30°30′N,114°20′E | 23.6℃; 906.8mm | 双季稻模式(DR) | NCNT | 张浩然,2019[ |
Ⅵ | 荆州 | 30°21′N,112°09′E | 24.6℃; 734.9mm | 双季稻模式(DR) | U+CI、U+SWD、US+SWD、CRU+CI、CRU+SWD、CRUS+SWD | 李如楠等,2020[ |
Ⅶ | 监利 | 30°03′N,113°47′E | 16.2℃; 1100~1300mm | 稻虾模式 (RC)&稻闲模式(RF) | RC-NN、RC-QN、 RC-CN、RF-CN | 帅艳菊,2021[ |
Table 2
Calibration results of crop parameters in DNDC model"
作物参数 Crop parameters | 默认值Default values | 校准值Calibration values | |||||||
---|---|---|---|---|---|---|---|---|---|
水稻 | 小麦 | 油菜 | 一季中稻 | 早稻 | 晚稻 | 小麦 | 油菜 | ||
籽粒最大生物量 Max biomass production of grain (kg C/hm2/yr) | 3377.58 | 3120.1 | 1295.82 | 3468 | 2960 | 3136 | 2300 | 1100 | |
籽粒生物量占比 Biomass fraction of grain | 0.41 | 0.41 | 0.23 | 0.43 | 0.44 | 0.41 | 0.41 | 0.25 | |
籽粒碳氮比 Biomass C/N ratio of grain | 45 | 40 | 20 | 45 | 43 | 48 | 40 | 20 | |
成熟积温 Thermal degree days for maturity(℃) | 2000 | 1300 | 1800 | 2300 | 2200 | 2000 | 1300 | 1800 | |
需水量 Water demand (g water/g DM) | 508 | 200 | 300 | 600 | 550 | 580 | 450 | 400 | |
氮固定指数 N fixation index (crop N/N from soil) | 1.05 | 1 | 1 | 1.05 | 1 | 1 | 1 | 1 | |
最适温度 Optimum temperature (℃) | 25 | 22 | 25 | 30 | 27 | 28 | 22 | 24 |
Table 3
Greenhouse gas emissions and dSOC of different rice-based cropping systems in Qianjiang City in 2019"
模式 | 面积(hm2) | 均量 | 总量 | |||||
---|---|---|---|---|---|---|---|---|
CH4(kg·hm-2) | N2O(kg·hm-2) | dSOC(kg C·hm-2) | CH4(×103 t) | N2O(t) | dSOC(×103t C) | |||
RC | 58395.64 | 394.50 | 1.43 | 274.30 | 23.04 | 83.64 | 16.02 | |
RF | 22313.36 | 407.35 | 1.45 | 204.95 | 9.09 | 32.43 | 4.57 | |
RW | 25793.52 | 470.60 | 1.62 | 223.57 | 12.14 | 41.76 | 5.77 | |
RR | 10930.95 | 436.48 | 1.95 | 235.23 | 4.77 | 21.31 | 2.57 | |
汇总 | 117433.47 | -- | -- | -- | 49.04 | 179.14 | 28.93 |
1 | IPCC . Climate Change 2007: Synthesis Report[R]. IPCC: Geneva, Switzerland, 2007. |
2 | IPCC . Climate Change 2014: Synthesis Report[R]. IPCC: Geneva, Switzerland, 2014. |
3 | IPCC . Climate Change 2013: The Physical Science Basis[M] Cambridge, UK; Cambridge University Press, 2013. |
4 | Carlson K M , Gerber J S , Mueller N D , et al . Greenhouse gas emissions intensity of global croplands[J]. Nature Climate Change, 2017, 7(1): 63-68. |
5 | 王萍,王少先,夏文建,等 . 稻田湿地土壤碳固定研究进展[J]. 江西农业学报, 2014, 26(01): 77-82. |
Wang P , Wang S X , Xia W J , et al . Research advance in soil carbon sequestration in paddy wetlands[J]. Acta Agriculturae Jiangxi, 2014, 26(01): 77-82. | |
6 | Chen C , Van Groenigen K J , Yang H , et al . Global warming and shifts in cropping systems together reduce China's rice production[J]. Global Food Security, 2020, 24: 100359. |
7 | 张顺涛, 任涛, 周橡棋, 等 . 油/麦-稻轮作和施肥对土壤养分及团聚体碳氮分布的影响[J]. 土壤学报: 1-13[2021-10-23].. |
Zhang S T , Ren T , Zhou X Q , et al . Effects of rapeseed/wheat-rice rotation and fertilization on soil nutrients and distribution of aggregate carbon and nitrogen[J]. Acta Pedologica Sinica: 1-13[2021-10-23].. | |
8 | 中国水稻研究所 . 中国水稻种植区划[M]. 杭州: 浙江科学技术出版社, 1989. |
China National Rice Research Institute . Regionalization of rice cultivation in China [M]. Hangzhou: Zhejiang Science and Technology Press, 1989. | |
9 | 陈松文,江洋,汪金平,等 . 湖北省稻虾模式发展现状与对策分析[J]. 华中农业大学学报, 2020, 39(02): 1-7. |
Chen S W , Jiang Y , Wang J P , et al . Situation and countermeasures of integrated rice-crayfish farming in Hubei Province[J]. Journal of Huazhong Agricultural, 2020, 39(02): 1-7. | |
10 | 湖北省统计局 . 湖北统计年鉴. 2020[M]. 北京: 中国统计出版社, 2021. |
Hubei Statistics Bureau . Hubei Statistical Yearbook. 2020[M]. Beijing: China Statistics Press, 2021. | |
11 | 佀国涵,袁家富,彭成林,等 . 长期稻虾共作模式提高稻田土壤生物肥力的机理[J]. 植物营养与肥料学报, 2020, 26(12): 2168-2176. |
Si G H , Yuan J F , Peng C L , et al . Mechanism of long-term integrated rice-crayfish farming increasing soil biological fertility of paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2168-2176. | |
12 | 杨智景,顾海龙,顾明,等 . 稻虾种养模式对土壤肥力的影响[J]. 江苏农业科学, 2020, 48(23): 245-249. |
Yang Z J , Gu H L , Gu M , et al . Effects of farming of rice and shrimp on soil fertility[J]. Journal of Jiangsu Agricultural Sciences, 2020, 48(23): 245-249. | |
13 | 赵考诚,马军,叶迎,等 . 稻虾生态种养综合效应研究进展[J]. 作物杂志, 2021(02): 22-27. |
Zhao K C , Ma J , Ye Y , et al . Research advance on the comprehensive effects of ecological farming of rice and shrimp[J]. Crops, 2021(02): 22-27. | |
14 | 邓颖 . 潜江市稻虾生态农业模式的发展困境及对策[J]. 山西农业科学, 2018, 46(08): 1396-1398. |
Deng Y . Study on the development difficulties and countermeasures of the ecological agriculture model of rice and shrimp in Qianjiang City[J]. Journal of Shanxi Agricultural Sciences, 2018, 46(08): 1396-1398. | |
15 | 马达文,汤亚斌 .2018年湖北省小龙虾产业发展报告[R].武汉: 湖北省水产技术推广总站, 2019. |
Ma D W , Tang Y B . 2018 Hubei Province crayfish industry development report[R]. Wuhan: Hubei Provincial Aquatic Technology Extension Station, 2019. | |
16 | 谢海宽,江雨倩,李虎,等 . DNDC模型在中国的改进及其应用进展[J]. 应用生态学报, 2017, 28(08): 2760-2770. |
Xie H K , Jiang Y Q , Li H , et al . Modification and application of the DNDC model in China[J]. Chinese Journal of Applied Ecology, 2017, 28(08): 2760-2770. | |
17 | Barnwal P , Kotani K . Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India[J]. Ecological Economics, 2013, 87: 95-109. |
18 | 秦鹏程,万素琴,邓环,等 . 湖北省水稻种植布局精细化气候区划[J]. 湖北农业科学, 2016, 55(16): 4150-4153. |
Qin P C , Wan S Q , Deng H , et al . Fine climatic regionalization of rice cultivated patterns in Hubei Province[J]. Hubei Agricultural Sciences, 2016, 55(16): 4150-4153. | |
19 | 骆世明 . 农业生态转型态势与中国生态农业建设路径[J]. 中国生态农业学报, 2017, 25(1): 1-7. |
Luo S M . Agroecology transition and suitable pathway for eco-agricultural development in China[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 1-7. | |
20 | Li C , Frolking S , Frolking T A . A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D9): 9759-9776. |
21 | Li C , Frolking S , Harriss R . Modeling carbon biogeochemistry in agricultural soils[J]. Global biogeochemical cycles, 1994, 8(3): 237-254. |
22 | Giltrap D L , Li C , Saggar S . DNDC: A process-based model of greenhouse gas fluxes from agricultural soils[J]. Agriculture, Ecosystems & Environment, 2010, 136(3-4): 292-300. |
23 | Jia J X , Ma Y C , Xiong Z Q . Net ecosystem carbon budget, net global warming potential and greenhouse gas intensity in intensive vegetable ecosystems in China[J]. Agriculture, Ecosystems & Environment, 2012, 150: 27-37. |
24 | 蔡祖聪, 徐华, 马静 . 稻田生态系统CH4和N2O排放[M]. 合肥: 中国科学技术大学出版社, 2009. |
Cai Z C , Xu H , Ma J . CH4 and N2O emissions from paddy ecosystem[M]. Hefei: University of Science and Technology of China Press, 2009. | |
25 | Hu Q , Liu T , Jiang S , et al . Combined Effects of Straw Returning and Chemical N Fertilization on Greenhouse Gas Emissions and Yield from Paddy Fields in Northwest Hubei Province, China[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(2): 392-406. |
26 | Zhang Z S , Chen J , Liu T Q , et al . Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China[J]. Atmospheric Environment, 2016, 144: 274-281. |
27 | Xu Y , Zhan M , Cao C , et al . Improved water management to reduce greenhouse gas emissions in no-till rapeseed–rice rotations in Central China[J]. Agriculture, Ecosystems & Environment, 2016, 221: 87-98. |
28 | 孙自川 . 稻虾共作下秸秆还田和投食对温室气体排放的影响[D]. 武汉: 华中农业大学, 2018. |
Sun Z C . Effects of straw returning and feeding on greenhouse gas emissions in rice-crayfish co-culture ecosystem[D]. Wuhan: Huazhong Agricultural University, 2018. | |
29 | 张浩然 . 寄生蜂防治二化螟对双季稻稻田生态效益及水稻产量的影响研究[D]. 武汉: 华中农业大学, 2019. |
Zhang H R . Effects of Chilo suppressalis under parasitic wasp control on ecological results and rice yield in double-cropping rice fields[D]. Wuhan: Huazhong Agricultural University, 2019. | |
30 | 李如楠,李玉娥,王斌,等 . 双季稻减排增收的水氮优化管理模式筛选[J]. 农业工程学报, 2020, 36(21): 105-113. |
Li R N , Li Y E , Wang B , et al . Pattern selection of water and nitrogen practices to reduce greenhouse gas emission and increase profit in a double rice system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 105-113. | |
31 | 帅艳菊 . 湖北省主要稻作模式温室气体排放拟研究[D]. 武汉: 华中农业大学, 2021. |
Shuai Y J . Simulation research on greenhouse gas emission of major rice-based cropping systems in Hubei Province[D]. Wuhan: Huazhong Agricultural University, 2021. | |
32 | Smith P , Smith J U , Powlson D S , et al . A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments[J]. Geoderma. 1997, 81(1): 153-225. |
33 | Mousavizadeh SF , Honar T , Ahmadi SH . Assessment of the AquaCrop Model for simulating Canola under different irrigation managements in a semiarid area[J]. Int J Plant Prod, 2016, 10(4): 425-446. |
34 | 邹凤亮 . 江汉平原稻田温室气体排放特征研究[D]. 武汉: 华中农业大学, 2018. |
Zou F L . The characteristics of greenhouse gas emissions from rice paddy fields in Jianghan Plain[D]. Wuhan: Huazhong Agricultural University, 2021. | |
35 | 吴梦琴, 李成芳, 盛锋, 等 .基于DNDC 模型评估湖北省不同稻作系统不同管理措施温室气体排放的周年变化[J]. 中国生态农业学报(中英文), 2021,29(09):1480-1492. |
Wu M Q , Li C F , Sheng F , et al . Assessment of the annual greenhouse gases emissions under different rice-based cropping systems in Hubei Province based on the denitrification-decomposition (DNDC) model[J]. Chinese Journal of Eco-Agriculture, 2021,29(09):1480-1492. | |
36 | Tao S , Piao S , Canadell JG , et al . Data-driven estimates of global nitrous oxide emissions from croplands[J]. National Science Review, 2020, 7(2):441-52. |
37 | Ma K , Lu Y H . Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil[J]. FEMS Microbiology Ecology, 2011, 75(3): 446-456. |
38 | Liu S , Hu Z , Wu S , et al . Methane and Nitrous Oxide Emissions Reduced Following Conversion of Rice Paddies to Inland Crab–Fish Aquaculture in Southeast China[J]. Environmental Science & Technology, 2015, 50(2): 633-642. |
39 | Zeng Q , Gu X , Chen X , et al . The impact of Chinese mitten crab culture on water quality, sediment and the pelagic and macrobenthic community in the reclamation area of Guchenghu Lake[J]. Fisheries Science, 2013, 79(4): 689-697. |
40 | Bastviken D , Cole J J , Pace M L , et al . Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G2): doi:10.1029/2007JG000608. |
41 | 厉宝仙, 王保君, 怀燕, 等 . 水稻-红鳌螯虾共作对稻田土壤养分、碳库与稻米品质的影响[J]. 浙江农业学报, 2021, 33(4):688-696. |
Li B X , Wang B J , Huai Y , et al . Effects of integrated rice-redclaw crayfish farming system on soil nutrients,carbon pool and rice quality[J]. Acta Agriculturae Zhejiangensis, 2021, 33(4):688-696. | |
42 | 江洋,汪金平,曹凑贵 . 稻田种养绿色发展技术[J]. 作物杂志, 2020(02): 200-204. |
Jiang Y , Wang J P , Cao C G . Green development technology of paddy field cultivation[J]. Crops, 2020(02): 200-204. | |
43 | 管勤壮,成永旭,李聪,等 . 稻虾共作对土壤有机碳的影响及其与土壤性状的关系[J]. 浙江农业学报, 2019, 31(01): 113-120. |
Guan Q Z , Cheng Y X , Li C , et al . Changes of soil organic carbon and relationships with soil properties in rice-crayfish coculture system[J]. Acta Agriculturae Zhejiangensis, 2019, 31(01): 113-120. | |
44 | Xu Q , Liu T , Guo H L , et al . Conversion from rice–wheat rotation to rice–crayfish coculture increases net ecosystem service values in Hung-tse Lake area, east China[J]. Journal of Cleaner Production, 2021, 319. |
[1] | Lei Wu,Xiaohe Liang,Jisiguleng Wu,Rui Wang. Method and Agricultural Empirical Study of Query Reformulation Based on Word Embedding [J]. Journal of Agricultural Big Data, 2019, 1(2): 114-120. |
[2] | Zhang Chenyang, Yang Xuebing, Zhang Wenshen. Accurate Precipitation Nowcasting with Meteorological Big Data: Machine Learning Method and Application [J]. Journal of Agricultural Big Data, 2019, 1(1): 78-87. |
|