Journal of Agricultural Big Data ›› 2022, Vol. 4 ›› Issue (1): 98-108.doi: 10.19788/j.issn.2096-6369.220111
Previous Articles Next Articles
Miao He1(), Xin Li1, Zhiqiang Zhu2, Jianying Feng1(
)
Received:
2022-01-14
Online:
2022-03-26
Published:
2022-06-29
Contact:
Jianying Feng
E-mail:hemiao0320@163.om;fjying@cau.edu.cn
CLC Number:
Miao He, Xin Li, Zhiqiang Zhu, Jianying Feng. Modeling Table Grapes: Physicochemical Indexes and Sensory Quality Based on PCA-GA-SVR during Transportation Process[J].Journal of Agricultural Big Data, 2022, 4(1): 98-108.
Table1
Table Grape Sensory Evaluation Scoring Standard"
感官属性 (满分100分) | 评价标准 | 打分 范围 |
---|---|---|
外观 (满分20分) | 果穗松散、落粒,果梗干枯,果形差,果粒萎蔫、流汁、无果粉 | 1-5 |
果穗较紧实,果梗稍褐变,果形较好,果色暗淡、果粉部分脱落 | 6-15 | |
果穗紧密适度、果梗鲜嫩、果形端正,果色均匀、布满果粉 | 16-20 | |
香气 (满分20分) | 无品种特定香气或香气不明显 | 1-5 |
有品种特定香气,但是香气较淡 | 6-15 | |
具有浓郁的葡萄品种特定香气 | 16-20 | |
果皮和果肉质地 (满分30分) | 果皮粗糙,果肉黏滑,果皮、果肉呈袋状分离 | 1-10 |
果皮韧性大于脆性,果肉变软 | 11-20 | |
果皮膨压大,食用时易碎裂,果肉紧厚而不粗糙,多汁 | 21-30 | |
果粒风味 (满分30分) | 风味不协调,酸度过大,涩味重,有不良气味 | 1-10 |
风味较好,酸甜味较淡,无不良气味 | 11-20 | |
风味极佳,糖酸比例协调,具有葡萄特有的芳香 | 21-30 |
Table 2
Correlation coefficient matrix of quality indexes of table grapes for normal temperature transportation"
指标 | 失重率 | 可滴定酸含量 | 可溶性固形物含量 | 抗坏血酸含量 | 果梗拉力 | 果梗叶绿素含量 | 硬度 | 弹性 | 凝聚性 | 咀嚼性 | 回复性 | 感官评价 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
失重率 | 1 | 0.49 | 0.36 | 0.50 | -0.91 | -0.96 | -0.91 | -0.88 | -0.91 | -0.93 | -0.84 | -0.87 |
可滴定酸含量 | 0.49 | 1 | 0.57 | 0.83 | -0.41 | -0.34 | -0.43 | -0.41 | -0.47 | -0.42 | 0.36 | -0.33 |
可溶性固形物含量 | 0.36 | 0.57 | 1 | 0.59 | 0.24 | 0.23 | 0.18 | -0.23 | -0.27 | -0.19 | -0.14 | -0.44 |
抗坏血酸含量 | 0.50 | 0.83 | 0.59 | 1 | -0.40 | -0.35 | -0.40 | -0.42 | -0.46 | -0.40 | -0.34 | -0.33 |
果梗拉力 | -0.90 | -0.40 | 0.24 | -0.41 | 1 | 0.91 | 0.89 | 0.85 | 0.87 | 0.91 | 0.85 | 0.82 |
果梗叶绿素含量 | -0.96 | -0.34 | 0.24 | -0.35 | 0.92 | 1 | 0.92 | 0.88 | 0.89 | 0.93 | 0.86 | 0.88 |
硬度 | -0.91 | -0.43 | 0.18 | -0.40 | 0.89 | 0.91 | 1 | 0.85 | 0.88 | 0.98 | 0.85 | 0.88 |
弹性 | -0.88 | -0.41 | -0.23 | -0.42 | 0.85 | 0.87 | 0.8 | 1 | 0.83 | 0.89 | 0.76 | 0.79 |
凝聚性 | -0.91 | -0.46 | -0.26 | -0.46 | 0.87 | 0.89 | 0.88 | 0.83 | 1 | 0.93 | 0.83 | 0.83 |
咀嚼性 | -0.93 | -0.42 | -0.19 | -0.40 | 0.91 | 0.93 | 0.98 | 0.89 | 0.94 | 1 | 0.86 | 0.88 |
回复性 | -0.84 | -0.36 | -0.14 | -0.34 | 0.85 | 0.86 | 0.85 | 0.76 | 0.83 | 0.86 | 1 | 0.80 |
感官评价 | -0.86 | -0.33 | -0.44 | -0.32 | 0.82 | 0.88 | 0.87 | 0.79 | 0.83 | 0.88 | 0.81 | 1 |
Table 3
Contribution rate of principal components of physical and chemical indicators of normal temperature transportation"
主成分 | 特征差 | 特征差贡献率% | 累计特征差贡献率% |
---|---|---|---|
Z1 | 6.7604 | 61.379 | 61.379 |
Z2 | 2.7630 | 25.087 | 86.466 |
Z3 | 0.4428 | 4.020 | 90.486 |
Z4 | 0.2805 | 2.547 | 93.033 |
Z5 | 0.1974 | 1.792 | 94.825 |
Z6 | 0.1556 | 1.412 | 96.237 |
Z7 | 0.1325 | 1.203 | 97.440 |
Z8 | 0.1137 | 1.032 | 98.472 |
Z9 | 0.0976 | 0.886 | 99.358 |
Z10 | 0.0691 | 0.628 | 99.986 |
Z11 | 0.0015 | 0.014 | 100.000 |
1 | Akaberi M, Hosseinzadeh H. Grapes (Vitis vinifera) as a Potential Candidate for the Therapy of the Metabolic Syndrome[J]. Phytotherapy Research, 2016,30(4):540-556. |
2 | 原变鱼. 鲜食葡萄可持续供应链风险评价的神经网络模型优化及系统[D].中国农业大学,2021. |
Yuan B Y. Neural network model optimization and system for risk assessment of sustainable supply chain of table grapes [D]. China Agricultural University, 2021. | |
3 |
王康飞,王桂英,王德铮.不同保鲜方式对葡萄保鲜效果影响的对比研究[J].包装工程,2020,41(15):19-24.DOI:10.19554/j.cnki.1001-3563.2020.15.004 .
doi: 10.19554/j.cnki.1001-3563.2020. 15.004 |
Wang K F, Wang G Y, Wang D Z. A comparative study on the effect of different preservation methods on the effect of grape preservation [J]. Packaging Engineering, 2020, 41(15): 19-24. DOI: 10.19554/j.cnki.1001-3563.2020. 15.004 .
doi: 10.19554/j.cnki.1001-3563.2020. 15.004 |
|
4 | HONG H S P S J. H.. Effect of Familiarity on a Cross-Cultural Acceptance of a Sweet Ethnic Food: A Case Study with Korean Traditional Cookie[J]. Journal of Sensory Studies, 2014,29:110-125. |
5 | 李鑫.基于支持向量回归建模的鲜食葡萄运输感官品质评价与预测[D].中国农业大学,2021. |
Li X. Evaluation and prediction of sensory quality of table grape transportation based on support vector regression modeling [D]. China Agricultural University, 2021. | |
6 | Rajamaki T, Alakomi H, Ritvanen T, et al. Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat[J]. Food Control, 2006, 17(1): 5-13. |
7 | 徐赛,陆华忠,周志艳,吕恩利,杨径.基于电子鼻的果园荔枝成熟阶段监测[J].农业工程学报,2015,31(18):240-246. |
Xu S, Lu H Z, Zhou Z Y, et al. Monitoring of orchard litchi maturity stage based on electronic nose [J]. Chinese Journal of Agricultural Engineering, 2015, 31(18): 240-246. | |
8 |
HEMPEL A, O'SULLIVAN M.G,et al. Use of optical oxygen sensors to monitor residual oxygen in pre- and post-pasteurised bottled beer and its effect on sensory attributes and product acceptability during simulated commercial storage.[J]. LWT-Food Science & Technology,2013(1). DOI:http://dx.doi.org/10.1016/j.lwt.2012.05.026 .
doi: 10.1016/j.lwt.2012.05.026 |
9 | Dong C, Zhu H, Zhao J, et al. Sensory quality evaluation for appearance of needle-shaped green tea based on computer vision and nonlinear tools[J]. Journal of Zhejiang University-SCIENCE B, 2017, 18(6): 544-548. |
10 | 董春旺,朱宏凯,周小芬,袁海波,赵杰文,陈全胜.基于机器视觉和工艺参数的针芽形绿茶外形品质评价[J].农业机械学报,2017,48(09):38-45. |
Dong C W, Zhu H K, Zhou X F, et al. Evaluation of the shape and quality of needle bud-shaped green tea based on machine vision and process parameters [J]. Journal of Agricultural Machinery, 2017, 48(09): 38-45. | |
11 |
唐雪平. 基于化学分析与机器学习的铁观音茶叶品质评价体系[D].华侨大学,2020.DOI:10.27155/d.cnki.ghqiu.2020.000700 .
doi: 10.27155/d.cnki.ghqiu.2020.000700 |
Tang X P. Quality evaluation system of Tieguanyin tea based on chemical analysis and machine learning [D]. Huaqiao University, 2020. DOI: 10.27155/d.cnki.ghqiu.2020.000700 .
doi: 10.27155/d.cnki.ghqiu.2020.000700 |
|
12 | 罗娜. 数据挖掘中的新方法——支持向量机[J]. 软件导刊, 2008(10):30-31. |
Luo N. A New Method in Data Mining——Support Vector Machine [J]. Software Guide, 2008(10):30-31. | |
13 | Hsu C W, Lin C J. A simple decomposition method for support vector machines[J]. Machine Learning, 2002, 46(1): 291-314. |
14 | 蒋华伟,陈斯,杨震.基于IGWO-SVR短期储藏小麦品质预测模型研究[J].中国粮油学报,2021,36(08):79-87. |
Jiang H W, Yang S, Yang Z. Research on the quality prediction model of short-term storage wheat based on IGWO-SVR [J]. Chinese Journal of Cereals and Oils, 2021, 36(08): 79-87. | |
15 | Yao X, Cai F, Zhu P, et al. Non-invasive and rapid pH monitoring for meat quality assessment using a low-cost portable hyperspectral scanner[J]. Meat science, 2019, 152: 73-80. |
16 | Wang Y, Li T, Li L, et al. Micro-NIR spectrometer for quality assessment of tea: Comparison of local and global models[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020,237:118403. |
17 | Tang X L, Li Y, Li P, et al. Model predictive control based on SVR optimized by multi-agent particle swarm optimization algorithm[J]. Control and Decision, 2014, 29(4): 593-598. |
18 | Zhang HQ, Chen CX, Lu YFet al.Application of IWO-PSO-SVR algorithm in methane[J].China Environmental Science,2020(40):1453-1459. |
19 | 孙俊,莫云南,戴春霞,陈勇,杨宁,唐游.基于介电特性与IRIV-GWO-SVR算法的番茄叶片含水率检测[J].农业工程学报,2018,34(14):188-195. |
Sun J, Mo Y N, Dai C X, et al. The tomato leaves based on the characteristics of the dielectric and Iriv-Gwo-SVR algorithm test [J]. 14: 188-195. | |
20 | 肖建,于龙,白裔峰.支持向量回归中核函数和超参数选择方法综述[J].西南交通大学学报,2008(03):297-303. |
Xiao J, Yu L, Bai Y F. A review of kernel function and hyperparameter selection methods in support vector regression [J]. Journal of Southwest Jiaotong University, 2008(03):297-303. | |
21 | 崔东文,金波.基于改进的回归支持向量机模型及其在年径流预测中的应用[J].水力发电学报,2015,34(02):7-14. |
Cui D W, Jin B. An improved regression support vector machine model and its application in annual runoff prediction [J]. Journal of Hydroelectric Power Generation, 2015, 34(02): 7-14. | |
22 | Liu F, He Y, Wang L. Comparison of calibrations for the determination of soluble solids content and pH of rice vinegars using visible and short-wave near infrared spectroscopy[J]. Analytica Chimica Acta, 2008,610(2):196-204. |
23 | Lin H, Chen Q, Zhao J, et al. Determination of free amino acid content in Radix Pseudostellariae using near infrared (NIR) spectroscopy and different multivariate calibrations[J]. Journal of pharmaceutical and biomedical analysis, 2009, 50(5): 803-808. |
24 | 王雪冰, 郭庆胜, 王勇, 等. 地图图片的特征提取与自动识别方法[J]. 测绘与空间地理信息, 2019,42(09):28-32. |
Wang X B, Guo Q S, Wang Y, et al. Feature extraction and automatic identification method of map images [J]. Surveying and Mapping and Spatial Geographic Information, 2019,42(09):28-32. | |
25 |
王敬. 文本分类中SVM核函数的探讨[D].兰州大学,2021.DOI:10.27204/d.cnki.glzhu.2021.002135 .
doi: 10.27204/d.cnki.glzhu.2021.002135 |
Wang J. Discussion on SVM Kernel Function in Text Classification [D]. Lanzhou University, 2021. DOI: 10.27204/d.cnki.glzhu.2021.002135 .
doi: 10.27204/d.cnki.glzhu.2021.002135 |
|
26 | Wu D, Jiang Z, Xie X, et al. LSTM learning with Bayesian and Gaussian processing for anomaly detection in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2019, 16(8): 5244-5253. |
27 | Li Y, Jia X, Wang R, et al. A new oversampling method and improved radial basis function classifier for customer consumption behavior prediction[J]. Expert Systems with Applications, 2022: 116982. |
28 | Gao W, Han J. Prediction of Destroyed Floor Depth Based on Principal Component Analysis (PCA)-Genetic Algorithm (GA)-Support Vector Regression (SVR)[J]. Geotechnical and Geological Engineering, 2020,38(4):3481-3491. |
29 |
张凌栩,韩锐,李文明,史银雪,刘驰.大数据深度学习系统研究进展与典型农业应用[J].农业大数据学报,2019,1(02):88-104.DOI:10.19788/j.issn.2096-6369.190208 .
doi: 10.19788 /j.issn.2096-6369.190208 |
Zhang L Y, Han R, Ling W M, et al. Research progress and typical agricultural applications of big data deep learning systems [J]. Journal of Agricultural Big Data, 2019, 1(02): 88-104. DOI: 10.19788 /j.issn.2096-6369.190208 .
doi: 10.19788 /j.issn.2096-6369.190208 |
|
30 | 周平,李瑞峰, 郭东伟, 等. 高炉炼铁过程多元铁水质量指标多输出支持向量回归建模[J].控制理论与应用, 2016,33(06):727-734. |
Zhou P, Li R F, Guo D W, et al. Multi-output Support Vector Regression Modeling of Multiple Hot Metal Quality Indicators in Blast Furnace Ironmaking Process [J]. Control Theory and Application, 2016,33(06):727-734. |
[1] | Jiali Li, Han Yang, Jianping Qian. An Credible Traceability System for Cold Chain Logistics Developed for China’s Agricultural Products in the Context of COVID-19 [J]. Journal of Agricultural Big Data, 2022, 4(1): 14-24. |
[2] | Zhe Zhang, Xinting Yang, Helong Yu, Shanshan Li, Chuanheng Sun. Progress of Research to Develop a Traceability System for Fresh Agricultural Products Using Blockchain Technology [J]. Journal of Agricultural Big Data, 2022, 4(1): 25-34. |
[3] | Xin Zhang, Xiangzhen Peng, Yue Li, Xiaoyi Wang, Zhiyao Zhao, Jiping Xu. Information Traceability Model for the Grain and Oil Food Supply Chain Based on Trusted Identification and Trusted Blockchain [J]. Journal of Agricultural Big Data, 2022, 4(1): 35-48. |
[4] | Dasen Zhou, Jing Chen, Xin Zhang, Jilan Li, Zhicheng Li, Xiaodong Zheng, Weimin Gong, Ye Song. Research Status and Application Suggestions on Fruit and Vegetable Cold Chain Traceability System [J]. Journal of Agricultural Big Data, 2022, 4(1): 49-54. |
[5] | Qian Zhang, Yihui Tian, Wen Xiao, Yan Lu. Application of Big Data Technology in Cold Chain Logistics of Agricultural Products [J]. Journal of Agricultural Big Data, 2022, 4(1): 55-61. |
[6] | Jia Liu, Xiaolei Xia, Lijuan Wang, Shu Wang, Xuefeng Lv, Changfa Lu, Li Sun, Sucai Li. Imported Cold Chain Food Traceability Management Platform and Innovative Application [J]. Journal of Agricultural Big Data, 2022, 4(1): 69-76. |
[7] | Chen Chen. Research on the Construction of a Traceability System for Imported Cold Chain Food Based on Blockchain Technology under COVID-19 [J]. Journal of Agricultural Big Data, 2022, 4(1): 77-81. |
[8] | Qian Chen, Han Yang, Baogang Wang, Wensheng Li, Jianping Qian. Time Series Prediction of Cold-chain Transportation Temperature Based on GRU Neural Network Model [J]. Journal of Agricultural Big Data, 2022, 4(1): 82-88. |
[9] | Rongrong Zhou, Dong Chen, Siyuan Liu. Optimization Model of Vehicle Scheduling for Fresh Food Distribution Using the K-means Clustering Algorithm [J]. Journal of Agricultural Big Data, 2022, 4(1): 89-97. |
[10] | Zhijun Chen, Yan Liu, Yongzhong Qian. Quantitative Evaluation of Agricultural Product Safety Based on Risk Entropy [J]. Journal of Agricultural Big Data, 2020, 2(4): 47-54. |
[11] | Dongnan Li, Guoyang Pan, Qian Zhou, Bin Li. The Development Direction of Fresh Agricultural Products Supply Chain in China after COVID-19 [J]. Journal of Agricultural Big Data, 2020, 2(3): 42-51. |
[12] | Min Zuo, Siyu He, Qingchuan Zhang, Shuangshun Yao. Research on Food Source Traceability Technology Based on Blockchain [J]. Journal of Agricultural Big Data, 2020, 2(3): 52-60. |
|