农业大数据学报 ›› 2021, Vol. 3 ›› Issue (1): 45-55.doi: 10.19788/j.issn.2096-6369.210105
刘海燕1, 杨榕4, 侯彤瑜1, 赵维4, 姚兆群3, 王海江1, 张泽1, 高攀2, 吕新1()
收稿日期:
2020-12-01
出版日期:
2021-03-26
发布日期:
2021-05-18
通讯作者:
吕新
E-mail:lxshz@126.com
基金资助:
Haiyan Liu1, Rong Yang4, Tongyu Hou1, Wei Zhao4, Zhaoqun Yao3, Haijiang Wang1, Ze Zhang1, Pan Gao2, Lü Xin1()
Received:
2020-12-01
Online:
2021-03-26
Published:
2021-05-18
Contact:
Lü Xin
E-mail:lxshz@126.com
摘要:
本研究旨在开展新疆棉田土壤微生物资源大数据与多元异构农业资源数据间基础调查及信息的有效整合与科学分析。
根据新疆不同地区及不同成熟度的棉花种植分区,在新疆生产兵团棉花生产农业大数据平台的基础上,建立中国典型棉田生态系统的微生物组数据库及大数据可视化分析流程。通过LEfse差异分析、RDA冗余分析等手段,解析2017—2019年的新疆棉田土壤微生物多样性和群落结构,并采用建模等方式,实现对棉田土壤微生物资源与多元异构农业资源数据的有效整合。
建成了包含约1.7 GB的土壤微生物信息和5~6 GB环境信息的新疆棉田土壤微生物资源数据库和土壤微生物多样性的可视化分析流程。利用该平台,经分析发现:新疆地区的特早熟棉区(博乐、石河子、阜康),早熟棉区(奎屯),早中熟棉区(哈密)的棉田土壤细菌群落结构在门水平上变化较大,主要类群变形菌门(Proteobacteria)占20.9~29.8%,酸杆菌门(Acidobacteria)占16.1~30.6%,疣微菌门(Verrucomicrobia)占8.7~28.9%,绿弯菌门(Chloroflexi)占6.6~21.2%。LEfse分析显示差异物种共计255种,其中鞘脂单胞菌(Sphingomonadales)、脱硫杆菌(Desulfobacterales)、地杆菌(Geobacter)等是北疆棉区微生物群落结构差异的主要物种。
通过对新疆棉田土壤微生物多样性数据的收集、管理、及分析,为新疆生产兵团棉花生产农业大数据平台的构建与应用起到了重要的支撑作用,将为我国棉田土壤微生物多样性资源的保护和利用奠定科学基础。
中图分类号:
刘海燕, 杨榕, 侯彤瑜, 赵维, 姚兆群, 王海江, 张泽, 高攀, 吕新. 新疆棉田土壤微生物资源大数据平台建设与可视化分析[J]. 农业大数据学报, 2021, 3(1): 45-55.
Haiyan Liu, Rong Yang, Tongyu Hou, Wei Zhao, Zhaoqun Yao, Haijiang Wang, Ze Zhang, Pan Gao, Lü Xin. Construction of a Visual Analysis Platform for Microorganism Resources Big Data from Cotton Fields in Xinjiang, China[J]. Journal of Agricultural Big Data, 2021, 3(1): 45-55.
图4
RDA冗余分析注:图中不同颜色或形状的点表示不同环境条件下的样本组,图中显示分组椭圆;RDA图中物种默认以蓝色箭头表示;红色箭头表示数量型环境因子,环境因子箭头的长短可以代表环境因子对于物种数据的影响程度(解释量)的大小;环境因子红色箭头间的夹角代表正、负相关性(锐角:正相关;钝角:负相关;直角:无相关性);蓝色箭头显示排列前10的优势菌门。SK: 速效钾; SOM: 有机质; pH; SP: 速效磷; NN: 全氮; EC: 电导率; Elevation: 海拔; A_temperature: 积温 ≥10℃; F_period:无霜冻期;M_July:7月平均温度; M_sur_temp: 平均地表气温(0.1℃/d); T_ave_temp: 平均气温(0.1℃/d); A_wind_speed: 平均风速(0.1m/s); Sunshine_time: 日照时数(0.1h/d); M_humidity: 平均相对湿度(1%); M_pressure: 平均本站气压(0.1hPa); N: 经度; E: 纬度。"
1 | 周国民. 我国农业大数据应用进展综述[J]. 农业大数据学报, 2019, 1(1): 16-23. |
Zhou G M. Progress in the Application of Big Data in Agriculture in China [J]. Journal of Agricultural Big Data, 2019, 1(1): 16-23. | |
2 | 亓合媛,孙清岚,马俊才,等. 微生物组大数据管理与分析[J]. 微生物学报, 2017, 57(6): 932-941. |
Yuan H Y, Sun Q L, Ma J C, et al. Big data management and analysis of microbiome[J]. Acta Microbiologica Sinica, 2017, 57(6): 932-941. | |
3 | 刘柳, 马俊才. 国际微生物大数据平台的应用与启示[J]. 中国科学院院刊, 2018,33(8): 846-852. |
Liu L,Ma J C. Application and Enlightenment of International Big Data Platform for Microorganism. Proceedings of the Chinese Academy of Sciences, 2018,33(8): 846-852. | |
4 | 许哲平,邵曾婷,王昉,等. 农业生物多样性大数据平台建设研究和展望[J]. 农业大数据学报, 2019, 1(2): 76–87. |
Xu Z P,Shao Z T,Wang F, et al. [J]. Research and Prospect of agricultural biodiversity big data platform construction. Journal of Agricultural Big Data, 2019, 1(2): 76–87. | |
5 | Vestergaard G,Schulz S,Schöler A,et al. Making big data smart—how to use metagenomics to understand soil quality[J]. Biology and Fertility of Soils, 2017, 53(5): 479-484. |
6 | 郭书海, 吴波, 张玲妍,等. 土壤环境大数据:构建与应用[J]. 中国科学院院刊, 2017, 032(002): 202-208. |
Guo S H, Wu B, Zhang L Y, et al. Soil Environmental Big Data: Construction and Application [J]. Acta Microbiologica Sinica, 2017, 032(002): 202-208. | |
7 | 白洋, 钱景美, 周俭民, 等. 农作物微生物组:跨越转化临界点的现代生物技术[J]. 中国科学院院刊, 2017, 32(03): 260-265. |
Bai Y, Qian J M, Zhou J M, et al. Crop Microbiome: Breakthrough Technology for Agriculture [J]. Acta Microbiologica Sinica, 2017,32(03): 260-265. | |
8 | 李琦,杨晓玫,张建贵,等.农用微生物菌剂固定化技术研究进展[J].农业生物技术学报,2019,27(10):1849-1857. |
Li Q, Yang X M, Zhang J G, et al. Research Progress of Immobilization Technology of Agricultural Microbial Agents [J]. Journal of Agricultural Biotechnology. 2019, 27(10): 1849-1857. | |
9 | 赵思崎, 王敬敬, 杨宗政,等. 微生物复合菌剂的制备[J]. 微生物学通报, 2020, 47(5): 1492-1502. |
Zhao S Q, Wang J J, Yang Z Z, et al. Preparation of microbial compound agents [J]. Microbiology China, 2020, 47(5): 1492-1502 | |
10 | 吕宁, 石磊, 刘海燕,等. 生物药剂滴施对棉花黄萎病及根际土壤微生物数量和多样性的影响[J]. 应用生态学报, 2019, 30(02): 246-258. |
Lv N, Shi L, Liu H Y, et al. Effects of biological agent dripping on cotton Verticillium wilt and rhizosphere soil microorganism.[J]. Chinese Journal of Applied Ecology, 2019, 30(02): 246-258. | |
11 | 杨榕, 王敬敬, 徐松,等. 溶磷真菌的筛选及耐盐特性分析[J]. 微生物学通报, 2018, 45(10): 78-87. |
Yang R, Wang J J, Xu S, et al. Screening, identification and salt-tolerant characteristics of phosphate-solubilizing fungi [J]. Microbiology China, 2018, 45(10):78-87. | |
12 | 张永光, 刘晴, 王宏飞,等. 新疆阜康盐碱地可培养兼性嗜碱放线菌多样性及其酶活筛选[J]. 微生物学报, 2014, 54(002):183-190. |
Zhang Y G, Liu Q, Wang H F, et al. Biodiversity and enzymes of culturable facultative-alkaliphilic actinobacteria in saline-alkaline soil in Fukang,Xinjiang [J]. Acta Microbiologica Sinica, 2014, 54(002):183-190. | |
13 | 李宏彬, 索菲娅. 新疆特殊生境下微生物资源[J]. 干旱地区农业研究, 2004, 22(004):198-202. |
Li H B,Suo F Y, et al. Progress in the research on microorganism resources in special ecological environments of Xinjiang [J]. Agricultural Research in the Arid Areas, 2004, 22(004):198-202. | |
14 | Bai Y, Qian J M, Zhou J Met al. Crop Microbiome: Breakthrough Technology for Agriculture [J]. Proceedings of the Chinese Academy of Sciences, 2017,32(03):260-265. |
15 | Brodhagen M, Peyron M, Miles C, et al. Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl Microbiol Biotechnol, 2015, 99(3): 1039-1056. |
16 | Krueger MC, Harms H, Schlosser D. Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol, 2015, 99(21): 8857-8874. |
17 | 李香真, 郭良栋, 李家宝, 等. 中国土壤微生物多样性监测的现状和思考[J]. 生物多样性, 2016, 24 (11): 1240–1248. |
Li X Z,Guo L D,Li J B, et al. Soil microbial diversity observation in China: current situation and future consideration[J]. Biodiversity Science, 2016, 24 (11): 1240–1248. | |
18 | 潘恺,郭志英,刘杰,等. 中国土壤微生物组数据平台的构建与实现[J]. 土壤学报, 2019, 56(5):1023-1033. |
Pan K,Guo Z Y, Liu J, et al. Building and Materializing of China Soil Microbiome Data Platform[J]. ACTA PEDOLOGICA SINICA, 2019, 56(5):1023-1033. | |
19 | 吕新, 梁斌, 张立福,等. 新疆生产建设兵团棉花生产大数据平台建设与探索[J]. 农业大数据学报, 2020, 002(001): 70-78. |
Lv X, Liang B, Zhang L F, et al. The Construction of Agricultural Big Data Platform for XPCC’s Cotton Production [J]. Agriculture & Technology, 2020, 002(001):70-78. | |
20 | 梁斌, 仵晓娟, 李继玲, 等. 林果大数据分析应用平台设计研究—以新疆生产建设兵团为例[J]. 中南林业科技大学学报, 2020, 40(9): 173-182. |
Liang B, Wu X J, Li J L, et al. Research and design of big data analysis and application platform for forestry and fruit industry: take Xinjiang production and construction corps as an example[J]. Journal of Central South University of Forestry & Technology, 2020,40(9): 173-182. | |
21 | 杨剑虹, 王成林, 代亨林,等. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社2008. |
Yang J H, Wang C L, Dai H L, et al. Soil Agrochemical Analysis and Environmental Monitoring[M]. Beijing: China Land Press, 2008. | |
22 | Pei A Y, Oberdorf W E, Nossa C W, et al. Diversity of 16S rRNA Genes within Individual Prokaryotic Genomes[J]. Applied and Environmental Microbiology, 2010, 76(12):3886-3897. |
23 | Zhang J J, Kobert K, Flouri T A, et al. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 2014,30(5):614-620. |
24 | Vasileiadis S, Puglisi E, Arena M, et al. Soil Bacterial Diversity Screening Using Single 16S rRNA Gene V Regions Coupled with Multi-Million Read Generating Sequencing Technologies[J]. Plos One, 2012, 8(7): e42671. |
25 | Caporaso, J.G.et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods,2010,7(5), 335-336. |
26 | Ahn, J, Sinha, R, Pei, Z, et al. Human Gut Microbiome and Risk of Colorectal Cancer[J]. Cancer spectrum Knowledge Environment, 2013, 105(24):1907-1911. |
27 | Adler, al C.J.et. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the neolithic and industrial revolutions[J]. Nature Genetics, 2013, 45(4): 450-455. |
28 | 李文轲, 李丰余, 张思瑶,等. 基因组二代测序数据的自动化分析流程[J]. 遗传, 2014(06): 620-626. |
Li W K, Li F Y, Zhang S Y, et al. Automatic analysis pipeline of next-generation sequencing data [J]. Hereditas, 2014(06): 620-626. | |
29 | 李涛,冯仲科,孙素芬,等. 于Hadoop的气象大数据分析GIS平台设计与试验[J]. 农业机械学报, 2019, 050(001):180-188. |
Li T, Fang Z K, Sun S F, et al. Design and Test of GIS Platform for Meteorological Data Analysis Based on Hadoop [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 050(001):180-188. | |
30 | 胡莉婷, 胡琦, 潘学标,等. 气候变暖和覆膜对新疆不同熟性棉花种植区划的影响[J]. 农业工程学报, 2019, 035(002): 90-99. |
Hu L T, Hu Q, Pan X B, et al. Effects of global warming and plastic mulching on cotton-planting zoning with different matures in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering2019, 035(002):90-99. | |
31 | 张萌, 董伟, 钱蓉, 等. 安徽省植保大数据平台建设与应用展望[J]. 农业大数据学报, 2020, 002(001):36-44. |
Zhang M, Dong W, Qian R, et al. Construction and Application Prospects of Big Data Platform for Plant Protection in Anhui Province [J]. Agriculture & Technology, 2020, 002(001):36-44. | |
32 | Widder S, Allen R J, Pfeiffer T, et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics [J]. The ISME Journal, 2016. 1–12. |
33 | Delgado-Baquerizo M, Oliverio A M, Brewer T E, et al. A global atlas of the dominant bacteria found in soil[J]. Science, 2018, 359(6373):320-325. |
34 | Walters W A, Zhao J, Nicholas Y, et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes[J]. Proceedings of the National Academy of Science of the United States of America, 2018, 115:7368-7373. |
35 | Fan K, Weisenhorn P, Gilbert J A, et al. Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields[J]. Soil Biology and Biochemistry, 2018, 121:185-192. |
36 | Jiao S, Yang Y, Xu Y, et al. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China[J]. The ISME Journal.2020, 14(1):202-216. |
37 | 胡晓婧, 刘俊杰, 魏丹,等. 东北黑土区不同纬度农田土壤真菌分子生态网络比较[J]. 应用生态学报. 2018,29(11): 3802-3810. |
Hu X Q, Liu J J, Wei D, et al. Comparison on fungal molecular ecological networks of agricultural soils with different latitudes in the black soil region of Northeast China [J]. Chinese Journal of Applied Ecology. 2018, 29(11): 3802-3810. | |
38 | Zhang K, Shi Y, Cui X, et al. Salinity Is a Key Determinant for Soil Microbial Communities in a Desert Ecosystem[J]. Msystems, 2019, 4(1): 225-243. |
39 | 刘海洋,姚举,张仁福等.黄萎病不同发生程度棉田中土壤微生物多样性.生态学报,2018,38(5): 1619-1629. |
Liu H Y, Yao J, Zhang R F, et al. Analysis of soil microbial diversity in cotton fields differing in occurrence of cotton Verticillium wilt in Xinjiang[J]. Acta Ecologica Sinica, 2018, 38(5): 1619-1629. |
[1] | 陶耘, 成谢锋. 区域大数据发展与区域农业大数据建设水平比较研究[J]. 农业大数据学报, 2022, 4(1): 125-135. |
[2] | 汪汇涓, 徐倩, 周爱莲, 梁晓贺, 谢能付, 李小雨, 吴赛赛. 区块链的发展历程及在农业领域的应用展望[J]. 农业大数据学报, 2021, 3(3): 76-86. |
[3] | 李强, 高懋芳, 方莹. 农业大数据信息平台构建方法初探[J]. 农业大数据学报, 2021, 3(2): 24-30. |
[4] | 陈富桥, 凌晨. 茶叶全产业链大数据中心功能设计与开发进展[J]. 农业大数据学报, 2021, 3(2): 54-66. |
[5] | 蒋锐, 黄凤洪, 吴渝, 霍梦佳, 刘华威. 油料(油菜、花生)全产业链大数据的建设[J]. 农业大数据学报, 2021, 3(2): 67-74. |
[6] | 顾君, 贾暑花, 曾庆鸿. 基于知识中台的农业单品全产业链大数据平台建设研究[J]. 农业大数据学报, 2021, 3(1): 25-32. |
[7] | 张杰, 刘升平, 岳慧丽, 吕纯阳, 洪葳. 智慧蜂业大数据平台建设与应用[J]. 农业大数据学报, 2021, 3(1): 3-13. |
[8] | 温晗秋子, 郑永强, 刘杨. 柑橘大数据研究与应用[J]. 农业大数据学报, 2021, 3(1): 33-44. |
[9] | 段青玲, 刘怡然, 周新辉, 任妮, 李道亮. 大闸蟹养殖大数据分析模型和应用进展[J]. 农业大数据学报, 2021, 3(1): 56-65. |
[10] | 董春岩, 牛明雷, 姚艳, 常晓燕, 吕凌峰, 李楠. 蔬菜全产业链大数据平台建设与应用研究——以大白菜为例[J]. 农业大数据学报, 2021, 3(1): 66-72. |
[11] | 顾君, 齐晓军, 苑青微, 曾庆鸿. 农业单品全产业链大数据平台设计与实现[J]. 农业大数据学报, 2021, 3(1): 73-80. |
[12] | 官波, 陈娉婷, 罗治情, 马海荣, 沈祥成. 湖北省农业农村大数据发展问题研究[J]. 农业大数据学报, 2021, 3(1): 81-87. |
[13] | 陈彦清, 曹永生, 林雨楠, 方沩. 国家作物种质资源观测鉴定站点体系布局方法研究[J]. 农业大数据学报, 2020, 2(4): 20-28. |
[14] | 吕佳乐, 徐学农. 大数据驱动的天敌资源调查与监测体系构建研究[J]. 农业大数据学报, 2020, 2(4): 78-85. |
[15] | 王文生. 可信区块链在农业农村应用展望[J]. 农业大数据学报, 2020, 2(2): 14-24. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 763
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 922
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|