农业大数据学报 ›› 2021, Vol. 3 ›› Issue (1): 33-44.doi: 10.19788/j.issn.2096-6369.210104
收稿日期:
2021-02-10
出版日期:
2021-03-26
发布日期:
2021-05-18
通讯作者:
温晗秋子
E-mail:qiuzi.wh@pku.edu.cn
作者简介:
温晗秋子,女,副研究员,研究方向:大数据分析与应用,Email: 基金资助:
Qiuzi Wen‑Han1(), Yongqiang Zheng2, Yang Liu3
Received:
2021-02-10
Online:
2021-03-26
Published:
2021-05-18
Contact:
Qiuzi Wen?Han
E-mail:qiuzi.wh@pku.edu.cn
摘要:
本文以柑橘产业链模型为基本框架,提出柑橘大数据的明确定义。针对柑橘产业链中,生产资料、种植运营、加工储运和市场营销四个主要环节,逐一分析其核心数据要素构成、数据获取途径和数据应用难点。系统阐释产品标准化、图像识别、气象预测、数据可视化和数字化溯源等典型数据科技在柑橘产业中的应用方法和现状。通过分析可口可乐、重庆柑橘大数据应用和赣南脐橙柑橘大数据综合应用的代表性案例,展示了大数据及其分析技术在当前柑橘产业的绿色生产、病虫害防治、丰产和提高果品商品率等方面发挥的重要作用。我国柑橘研究工作自2007年后进入快速发展阶段,在人才体系培养、基础研究和成果转化应用上都取得了长足进步,但对大数据和人工智能等新技术的应用研究尚处在萌芽阶段,南方重要产区也在积极探索柑橘数字化转型的可行性方案。作为产业升级和数字化转型的核心资源,柑橘大数据拥有广泛的应用场景和巨大的发展潜力,但也面临着科技普惠、数据共享、模型算法研发等诸多挑战,亟待丰富数据采集形式,拓宽数据流通渠道,创新数据价值变现。
中图分类号:
温晗秋子, 郑永强, 刘杨. 柑橘大数据研究与应用[J]. 农业大数据学报, 2021, 3(1): 33-44.
Qiuzi Wen‑Han, Yongqiang Zheng, Yang Liu. Research and Application of Citrus Big Data[J]. Journal of Agricultural Big Data, 2021, 3(1): 33-44.
1 | 毛胜勇,叶植材.中国统计年鉴2018[M].北京: 中国统计出版社, 2018. |
Mao S Y, Ye Z C.China Statistical Yearbook 2018[M].Beijing: China Statistics Press, 2018. | |
2 | 中华人民共和国国家统计局.中国统计年鉴2020[M].北京: 中国统计出版社, 2020. |
National Bureau of statistics of the people's Republic of China.China Statistical Yearbook2020[M].Beijing:China Statistics Press, 2020. | |
3 | 新华社.中共中央国务院关于构建更加完善的要素市场化配置体制机制的意见[E]. http://www.gov.cn/zhengce/2020-04/09/content_5500622.htm, 2020-04-09. |
Xinhua News Agency.pinions of the CPC Central Committee and the State Council on building a more perfect market-oriented allocation system and mechanism of factors[E].http://www.gov.cn/zhengce/2020-04/09/content_5500622.htm, 2020-04-09. | |
4 | 姜侯, 杨雅萍, 孙九林. 农业大数据研究与应用[J]. 农业大数据学报, 2019, 1(01): 5-10. |
Jiang H, Yang Y P, Sun J L. Research and application of agricultural big data[J]. Journal of agricultural big data, 2019, 1(01): 5-10. | |
5 | Smith Adam. An Inquiry into the Nature and Causes of the Wealth of Nations[M]. County Fife: OUP Oxford, 2008 |
6 | 郁义鸿, 管锡展. 产业链纵向控制与经济规制[M]. 上海: 复旦大学出版社, 2006. |
Yu Y H, Guan X Z. Vertical control of industrial chain and economic regulation[M].Shanghai: Fudan University Press, 2006. | |
7 | Manyika, Chui M, Brown B, et al. Big data: The next frontier for innovation, competition, and productivity,[R/OL]McKinsey Global Institute, 2011. . |
8 | Lu H S,Ying Y B,Zhu D R, et al. Temperature influence for Fourier transform near-infrared transmittance measurement of citrus fruit soluble solids contents[C]. Boston, Massachusetts, United States, 2006. |
9 | Rashidi M, Keshavarzpour F. Classification of Tangerine Size and Shape Based on Mass and Outer Dimensions[J].Agricultural Engineering Research Journal, 2011, 1 (3): 51–54. |
10 | Annamalai P. Citrus Yield Mapping System Using Machine Vision[D]. A Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science (2004) |
11 | Patel H.N., Jain R.K., Joshi M.V.. Automatic Segmentation and Yield Measurement of Fruit using Shape Analysis[J]. International Journal of Computer Applications, 2012,45(7):19-24. |
12 | U.-O. Dorj, M. Lee, D.-U. Imaan. A new method for tangerine tree flower recognition[J].Computer Applications for Bio-technology, Multimedia, and Ubiquitous City, 2012,CCIS353:49-56. |
13 | Dorj Ulzii-Orshikh, Lee Malrey, Sang-seok Yun. An yield estimation in citrus orchards via fruit detection and counting using image processing[J]. Computers and Electronics in Agriculture,2017,140: 103-112 |
14 | Csillik O, Cherbini J, Johnson R, et al. Identification of Citrus Trees from Unmanned Aerial Vehicle Imagery Using Convolutional Neural Networks[J]. Drones, 2018, 2(4): 39. |
15 | Ok A O, Ozdarici-Ok A. DETECTION OF CITRUS TREES FROM UAV DSMS[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, 4: 27-34. |
16 | Osco L P, Arruda M, Junior J M, et al. A Convolutional Neural Network Approach for Counting and Geolocating Citrus-Trees in UAV Multispectral Imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160:97-106. |
17 | Redmon J., Farhadi A., 2018. Yolov3: An incremental improvement. arXiv preprint, arXiv:1804.02767. |
18 | Ren S., He K., Girshick R., Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. In Advances in neural information processing systems (NIPS2015), 91-99. |
19 | Ampatzidis Y, Partel V. UAV-Based High Throughput Phenotyping in Citrus Utilizing Multispectral Imaging and Artificial Intelligence[J]. Remote Sensing, 2019, 11(4). |
20 | Skaria, Mani: People, Arthropods. Weather and Citrus Diseases[J]. Diseases of Fruits and Vegetables Volume I: Diagnosis and Management, Springer Netherlands, 2004, 10.1007/1-4020-2606-4(Chapter 7):307-337. |
21 | Abdulridha J, Batuman O, Ampatzidis Y. UAV-Based Remote Sensing Technique to Detect Citrus Canker Disease Utilizing Hyperspectral Imaging and Machine Learning[J]. Remote Sensing, 2019, 11(11):1373. |
22 | Ampatzidis Y, Partel V, Bo M, et al. Citrus rootstock evaluation utilizing UAV-based remote sensing and artificial intelligence[J]. Computers and Electronics in Agriculture, 164. |
23 | Sharif, Muhammad, Khan, et al. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection, Computers and Electronics in Agriculture, Volume 150, 2018, Pages220-234, |
24 | Garcia-Ruiz, Sankaran, Maja, et al. Comparison of two aerial imaging platforms for identification of Huanglongbing-in-fected citrus trees[J]. Comput. Electron. Agric. 91, 106-115. |
25 | Partel V, Nunes L, Stansly P, et al. Automated vision-based system for monitoring Asian citrus psyllid in orchards utilizing artificial intelligence[J]. Computers and Electronics in Agriculture, 2019, 162:328-336. |
26 | Li H C,Yu C,Xia J J,et al. A Model Output Machine Learning Method for Grid Temperature Forecasts in the Beijing Area[J]. Advances in Atmospheric Sciences,2019,36(10). |
27 | Burke Amanda,Snook Nathan,David John Gagne II,et al. Calibration of Machine Learning–Based Probabilistic Hail Predictions for Operational Forecasting[J]. Weather and Forecasting,2020,35(1). |
28 | Mrunalini R. Badnakhe,Surya S. Durbha,Adinarayana Jagarlapudi,et al. Evaluation of Citrus Gummosis disease dynamics and predictions with weather and inversion based leaf optical model[J]. Computers and Electronics in Agriculture,2018,155: 130-141 |
29 | 金国花,杨军,李翔翔,李迎春:江西省柑橘生产现状及气象服务需求分析[J].气象与减灾研究, 2019, 42(4):301-305 |
Jin G H,Yang J, Li X X, et al.Analysis of citrus production status and meteorological service demand in Jiangxi Province[J]. Meteorology and disaster reduction, 2019, 42(4): 301-305. | |
30 | Lou W P, Qiu X F, Wu L H, et al.Scheme of Weather-Based Indemnity Indices for Insuring Against Freeze Damage to Citrus Orchards in Zhejiang,China[J].Agricultural Sciences in China,2009,8(11):1321-1331. |
31 | Rosenzweig Cynthia,Phillips Jennifer,Goldberg Richard,et al. Potential impacts of climate change on citrus and potato production in the US[J]. Agricultural Systems,1996,52(4):455-479. |
32 | Rijmenam[EB/OL]. [2013-7-18]. |
33 | 郑永强, 王娅, 杨琼, 等. 重庆三峡库区鲍威尔脐橙花期叶片矿质营养诊断[J]. 中国农业科学, 2018, 51(12). |
Zheng Y Q, Wang Y, Yang Q, et al. Leaf Nutritional Diagnosis of Powell Navel Orange at Flowering Stage in Chongqing Three Gorges Reservoir Area[J].Scientia Agricultura Sinica, 2018, 51(12). | |
34 | 王娅. 重庆三峡库区柑橘叶片营养综合诊断技术研究[D].重庆: 西南大学, 2019. |
Wang Y. Study on Leaf Nutritional Diagnosis of Citrus in Chongqing Three Gorges Reservoir Area[D].Chongqing: Southwest University, 2019. | |
35 | 赵丹, 杨肖华, 胡晶晶, 等. 大数据看我国柑橘市场[J],营销界,2019, 31:30-33. |
Zhao D, Yang X H, Hu J J, et al. Big data insights on China’s citrus market [J], Marketing, 2019, 31: 30-33. | |
36 | 郭文武, 叶俊丽, 邓秀新. 新中国果树科学研究70 年—柑橘[J],果树学报, 2019, 36(10): 1264-1272. |
Guo W W, Ye J L, Deng X X. Fruit scientific research in New China in the past 70 years:Citrus[J], Journal of Fruit Science,2019, 36(10): 1264-1272. | |
37 | 罗春霞, 甘国平, 黄强,等. 荆门市柑橘产业转型发展的对策研究[J]. 中国农业文摘:农业工程, 2019, 031(002):39-40. |
Luo C X, Gan G P, Huang Q, et al. Research on methods of transformation and development for the citrus Industry in Jingmen city [J], Agricultural Science and Engineering in China, 2019, 031(002): 39-40. | |
38 | 周洁珺, 曾兰. 广东云浮市柑橘产业转型升级研究[J]. 统计与管理, 2017, 000(012):66-67. |
Zhou J J and Zeng L. Research on the transformation and upgrading of citrus industry in Yunfu city of Guangdong [J], Statistics and Management, 2017, 000(012):66-67. |
[1] | 魏若璇. 数字乡村发展中的数据安全问题研究[J]. 农业大数据学报, 2022, 4(3): 109-115. |
[2] | 陶耘, 成谢锋. 区域大数据发展与区域农业大数据建设水平比较研究[J]. 农业大数据学报, 2022, 4(1): 125-135. |
[3] | 王小兵, 马晔. 我国农业农村信息化发展水平评价研究[J]. 农业大数据学报, 2022, 4(1): 5-11. |
[4] | 汪汇涓, 徐倩, 周爱莲, 梁晓贺, 谢能付, 李小雨, 吴赛赛. 区块链的发展历程及在农业领域的应用展望[J]. 农业大数据学报, 2021, 3(3): 76-86. |
[5] | 李强, 高懋芳, 方莹. 农业大数据信息平台构建方法初探[J]. 农业大数据学报, 2021, 3(2): 24-30. |
[6] | 陈富桥, 凌晨. 茶叶全产业链大数据中心功能设计与开发进展[J]. 农业大数据学报, 2021, 3(2): 54-66. |
[7] | 蒋锐, 黄凤洪, 吴渝, 霍梦佳, 刘华威. 油料(油菜、花生)全产业链大数据的建设[J]. 农业大数据学报, 2021, 3(2): 67-74. |
[8] | 顾君, 贾暑花, 曾庆鸿. 基于知识中台的农业单品全产业链大数据平台建设研究[J]. 农业大数据学报, 2021, 3(1): 25-32. |
[9] | 张杰, 刘升平, 岳慧丽, 吕纯阳, 洪葳. 智慧蜂业大数据平台建设与应用[J]. 农业大数据学报, 2021, 3(1): 3-13. |
[10] | 刘海燕, 杨榕, 侯彤瑜, 赵维, 姚兆群, 王海江, 张泽, 高攀, 吕新. 新疆棉田土壤微生物资源大数据平台建设与可视化分析[J]. 农业大数据学报, 2021, 3(1): 45-55. |
[11] | 段青玲, 刘怡然, 周新辉, 任妮, 李道亮. 大闸蟹养殖大数据分析模型和应用进展[J]. 农业大数据学报, 2021, 3(1): 56-65. |
[12] | 董春岩, 牛明雷, 姚艳, 常晓燕, 吕凌峰, 李楠. 蔬菜全产业链大数据平台建设与应用研究——以大白菜为例[J]. 农业大数据学报, 2021, 3(1): 66-72. |
[13] | 顾君, 齐晓军, 苑青微, 曾庆鸿. 农业单品全产业链大数据平台设计与实现[J]. 农业大数据学报, 2021, 3(1): 73-80. |
[14] | 官波, 陈娉婷, 罗治情, 马海荣, 沈祥成. 湖北省农业农村大数据发展问题研究[J]. 农业大数据学报, 2021, 3(1): 81-87. |
[15] | 陈彦清, 曹永生, 林雨楠, 方沩. 国家作物种质资源观测鉴定站点体系布局方法研究[J]. 农业大数据学报, 2020, 2(4): 20-28. |
|