农业大数据学报 ›› 2020, Vol. 2 ›› Issue (4): 20-28.doi: 10.19788/j.issn.2096-6369.200403

• 专题——农业基础性长期性科技工作 • 上一篇    下一篇

国家作物种质资源观测鉴定站点体系布局方法研究

陈彦清1,2(), 曹永生1,2, 林雨楠1,2, 方沩1,2()   

  1. 1.中国农业科学院作物科学研究所,北京 100081
    2.国家作物种质资源数据中心,北京 100081
  • 收稿日期:2020-11-19 出版日期:2020-12-26 发布日期:2021-03-11
  • 通讯作者: 方沩 E-mail:chenyanqing@caas.cn;fangwei@caas.cn
  • 作者简介:陈彦清,女,博士,研究方向:种质资源信息管理;E-mail:chenyanqing@caas.cn
  • 基金资助:
    农业科技创新联盟建设-农业基础性长期性科研工作(Y2017LM01)

A Layout Method for National Crop Germplasm Resource Observation and Identification Station Systems

Yanqing Chen1,2(), Yongsheng Cao1,2, Yunan Lin1,2, Wei Fang1,2()   

  1. 1.Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2.National Data Center for Crop Germplasm Resources, Beijing 100081, China
  • Received:2020-11-19 Online:2020-12-26 Published:2021-03-11
  • Contact: Wei Fang E-mail:chenyanqing@caas.cn;fangwei@caas.cn

摘要: 目的

作物种质资源观测鉴定站点的合理布局是获取科学有效观测鉴定数据的前提。本研究目的是通过建立布局合理、规范科学的种质资源长期观测鉴定体系,对资源的重要性状开展综合鉴定评价,整合观测鉴定数据,为作物种质资源大数据体系建设提供重要内容,为农业科学研究和现代种业发展提供坚实的基础数据支撑。

方法

本文首先根据调研,确定全国有能力进行评价鉴定的站点共379家,然后以气候生产潜力为载体,确定与作物生长密切相关的环境因素并计算各站点的因素值,最后以这些因素作为聚类因子选择空间最邻近聚类方法进行空间聚类,建立每类站点的泰森多边形完成区域的划分。

结果

基于以上方法,确定气温、降水、海拔、纬度和日照时长是与作物生长密切相关的环境因素,将站点聚类成26类,通过建立泰森多边形将全国划分成26个评价鉴定区,并在分区基础上设置6条站点布设原则以指导区域内站点选择。

结论

站点体系布局关系到未来观测评价结果的代表性和科学性,站点的选择是一个非常复杂的过程。本文的站点体系布局方法将环境因素和空间因素有效结合,不仅能够有效指导作物种质资源领域多环境评价鉴定地点的选择,也可为作物相关领域的观测站点布设提供参考,从而获得更具有价值和代表性的鉴定数据。

关键词: 作物种质资源, 环境因子, 空间聚类, 区域划分, 农业大数据, 观测站点布局, 科学数据, 观测数据

Abstract: Objective

Obtaining accurate scientific observation and identification data is crucial to establishing a comprehensive layout of crop germplasm resource observation and identification sites. The purpose of this research was to establish a rationally distributed, normative and scientific long-term observation and identification system for germplasm resources, carry out comprehensive identification and evaluation of the importance of resources, integrate observation and identification data, provide necessary content for the construction of a crop germplasm resources big data system and provide solid basic data support for agricultural scientific research and modern seed industry development.

Methods

First, 379 sites were identified on the basis of the investigation. Then the environmental factors most closely related to crop growth were determined, and the factor values of each site were calculated using the climate production potential. Finally, these factors were used to select the best method for identifying spatial clustering, and generate a Tyson polygon for each type of site to create area divisions.

Results

With consideration of the above methods, it was determined that temperature, precipitation, altitude, latitude and sunshine duration were the environmental factors most closely related to crop growth. The stations were clustered into 26 categories, China was divided into 26 evaluation and identification areas by generating a Tyson polygon, and six site layout principles were set on the basis of zoning to guide site selection in the region.

Conclusion

The layout of the station system affects the representativeness and scientific accuracy of future observation and evaluation results. The selection of stations is a highly complex process; the site system layout method used in this research effectively combined environmental and spatial factors, which not only effectively guided the selection of multiple environmental assessment sites in the crop germplasm resources field, but also provided reference for the layout of observation sites in crop-related fields, so as to obtain more valuable and representative identification data.

Key words: crop germplasm resources, environmental factor, spatial clustering, regional division, agricultural big data, observation station distribution, scientific data, observation data

中图分类号: 

  • S-3