农业大数据学报 ›› 2022, Vol. 4 ›› Issue (1): 35-48.doi: 10.19788/j.issn.2096-6369.220103
• 专题——农产品冷链物流智能管控与大数据 • 上一篇 下一篇
张新1,2,3(), 彭祥贞1,2,3, 李悦1,2,3, 王小艺1,2,3, 赵峙尧1,2,3, 许继平1,2,3(
)
收稿日期:
2022-01-20
出版日期:
2022-03-26
发布日期:
2022-06-29
通讯作者:
许继平
E-mail:zhangxin@btbu.edu.cn;xujiping@ 139.com
作者简介:
张新,男,博士,副教授,研究方向:区块与AI融合应用,E-mail: 基金资助:
Xin Zhang1,2,3(), Xiangzhen Peng1,2,3, Yue Li1,2,3, Xiaoyi Wang1,2,3, Zhiyao Zhao1,2,3, Jiping Xu1,2,3(
)
Received:
2022-01-20
Online:
2022-03-26
Published:
2022-06-29
Contact:
Jiping Xu
E-mail:zhangxin@btbu.edu.cn;xujiping@ 139.com
摘要:
粮油食品全供应链结构复杂、周转周期长、利益相关方众多,维护整个粮油食品供应链的安全具有挑战性,实现粮油食品全供应链信息安全可信溯源,有助于提高粮油食品质量安全,进而提升人民生活水平。本文以可信区块链和可信标识为驱动,构建粮油食品全供应链信息追溯模型,并进行合约化实现与实例验证。首先,在对粮油食品全供应链调研与分析的基础上,设计了适用于粮油食品的全供应链信息追溯模型框架。其次,分别设计了可信标识机制、多模存储机制和可信追溯机制。可信标识机制用于粮油食品全供应链的数据信息跟踪;多模存储机制用于解决粮油全供应链环节众多导致的信息繁多冗杂问题;可信追溯机制用于实现的粮油食品全供应链各环节信息采集、存储、传输的可信。最后,基于数据流转过程,进行了模型运行流程分析,并基于信息追溯模型,以超级账本Fabirc开源框架设计并研发了粮油食品可信追溯系统,通过案例对系统进行了实例验证。结果表明,本文构建的模型及系统解决了传统追溯机制及系统中存在的数据安全性低和共享性差的问题,实现了粮油食品供应链全生命周期多源异构信息的可信上链、存储、处理和追溯,提高了粮油食品追溯的细粒度和准确性,为粮食战略安全提供了一定的支撑。
中图分类号:
张新, 彭祥贞, 李悦, 王小艺, 赵峙尧, 许继平. 基于可信区块链和可信标识的粮油食品全供应链信息追溯模型[J]. 农业大数据学报, 2022, 4(1): 35-48.
Xin Zhang, Xiangzhen Peng, Yue Li, Xiaoyi Wang, Zhiyao Zhao, Jiping Xu. Information Traceability Model for the Grain and Oil Food Supply Chain Based on Trusted Identification and Trusted Blockchain[J]. Journal of Agricultural Big Data, 2022, 4(1): 35-48.
1 |
姜侯,杨雅萍,孙九林.农业大数据研究与应用[J].农业大数据学报,2019,1(01):5-15. DOI:10.19788/j.issn.2096-6369.190101 .
doi: 10.19788/j.issn.2096-6369.190101 |
Jiang H, Yang Y P, Sun J L. Research and Application of Agricultural Big Data [J]. Journal of Agricultural Big Data, 2019, 1(01): 5-15. DOI: 10.19788/j.issn.2096-6369.190101 .
doi: 10.19788/j.issn.2096-6369.190101 |
|
2 | 钱建平,吴文斌,杨鹏.新一代信息技术对农产品追溯系统智能化影响的综述[J].农业工程学报,2020,36(05):182-191. |
Qian J P, Wu W B, Yang P. A review of the impact of a new generation of information technology on the intelligence of agricultural product traceability systems [J]. Chinese Journal of Agricultural Engineering, 2020, 36(05): 182-191. | |
3 | 王杕,陈松.我国食品安全突发事件应急管理体系研究及环境污染案例分析[J].食品科学,2016,37(05):283-289. |
Wang H, Chen S. Research on emergency management system for food safety emergencies in my country and case analysis of environmental pollution [J]. Food Science, 2016, 37(05): 283-289. | |
4 | Wang S.; Li D.; Zhang Y. Smart contract-based product traceability system in the supply chain scenario[J]. IEEE Access 2019, 7,115122-115133.、 |
5 |
袁勇,王飞跃.区块链发展现状与展望[J].自动化学报,2016,42(04):481-494.DOI:10.16383/j.aas.2016.c160158 .
doi: 10.16383/j.aas.2016.c160158 |
Yuan Y, Wang F Y. The current situation and prospect of blockchain technology development [J]. Journal of Automation, 2016, 42(04): 481-494. DOI: 10.16383/j.aas.2016.c160158 .
doi: 10.16383/j.aas.2016.c160158 |
|
6 | Olsen P.; Borit M. The components of a food traceability system[J]. Trends in food science & technology, 2018, 77, 143-149. |
7 | Verbeke W. Agriculture and the food industry in the information age[J]. Social Science Electronic Publishing, 2005, 32(3),347-368. |
8 | Creydt M.; Fischer M. Blockchain and more-Algorithm driven food traceability[J]. Food Control, 2019. |
9 | Perboli G.; Musso S.; Rosano M. Blockchain in logistics and supply chain: A lean approach for designing real-world use cases[J]. IEEE Access, 2018, 6, 62018-62028. |
10 | Gatteschi V.; Lamberti F.; Demartini C. Blockchain and smart contracts for insurance: Is the technology mature enough? [J]. Future Internet, 2018, 10(2), 20. |
11 | Hou B.; Hou J.; Wu L. Consumer Preferences for Traceable Food with Different Functions of Safety Information Attributes: Evidence from a Menu-Based Choice Experiment in China[J]. International Journal of Environmental Research and Public Health, 2020, 17(1), 146. |
12 |
陈玥婧,周爱莲,谢能付 等.基于区块链和物联网的农产品质量安全追溯系统[J].农业大数据学报,2020,2(03):61-67.DOI:10.19788/j.issn.2096-6369.200307 .
doi: 10.19788/ j.issn.2096-6369.200307 |
Chen Y J Zhou A L, Xie N F et. based on blockchain and Internet of things agricultural product quality and safety traceability system [J]. Journal of Agricultural Big Data, 2020, 2(03): 61-67. DOI: 10.19788/ j.issn.2096-6369.200307 .
doi: 10.19788/ j.issn.2096-6369.200307 |
|
13 | Opara L.U. Traceability in agriculture and food supply chain: a review of basic concepts, technological implications, and future prospects[J]. Journal of Food Agriculture and Environment, 2003, 1,101-106. |
14 | Salah K.; Nizamuddin N.; Jayaraman R. Blockchain-based soybean traceability in agricultural supply chain[J]. IEEE Access, 2019, 7, 73295-73305. |
15 | Tao Q.; Cui X.; Huang X. Food Safety Supervision System Based on Hierarchical Multi-Domain Blockchain Network[J]. IEEE Access, 2019, 7, 51817-51826. |
16 | Mao D.; Wang F.; Hao Z. Credit evaluation system based on blockchain for multiple stakeholders in the food supply chain[J]. International journal of environmental research and public health, 2018, 15(8), 1627. |
17 | Lin Q.; Wang H.; Pei X. Food safety traceability system based on blockchain and EPCIS[J]. IEEE Access, 2019, 7, 20698-20707. |
18 | Casado-Vara R.; Prieto J.; De la Prieta F. How blockchain improves the supply chain: case study alimentary supply chain[J]. Procedia computer science, 2018, 134, 393-398. |
19 | Olsen P.; Aschan M. Reference method for analyzing material flow, information flow and information loss in food supply chains[J]. Trends in food science & technology, 2010, 21(6), 313-320. |
20 | Xu L.; Yang X.; Wu L. Consumers’ Willingness to Pay for Food with Information on Animal Welfare, Lean Meat Essence Detection, and Traceability[J]. International Journal of Environmental Research and Public Health, 2019, 16(19),3616. |
21 | Zhao G.; Liu S.; Lopez C. Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions[J]. Computers in Industry, 2019, 109, 83-99. |
22 | Peck, Blockchains M.E. : How they work and why they'll change the world. IEEE spectrum 2017, 54(10), 26-35. |
23 |
詹晶,刘滨,陈鸣.全球性重大突发公共卫生事件对我国粮食安全的影响及其防范[J/OL].中国农业科技导报:1-9[2022-01-26].DOI:10.13304/j.nykjdb.2021.0006 .
doi: 10.13304/j.nykjdb.2021.0006 |
Zhan J, Liu B, Chen M. The impact of major global public health emergencies on my country's food security and its prevention [J/OL]. China Agricultural Science and Technology Herald: 1-9 [2022-01-26] .DOI: 10.13304/j.nykjdb.2021.0006 .
doi: 10.13304/j.nykjdb.2021.0006 |
|
24 | Tseng J.H.; Liao Y.C.; Chong B. Governance on the drug supply chain via gcoin blockchain. International journal of environmental research and public health 2018, 15(6), 1055. |
25 | Landt, The history of RFID J.. IEEE potentials 2005, 24(4), 8-11. |
26 | Badia-Melis R.; Mishra P.; Ruiz-García L. Food traceability: New trends and recent advances. A review. Food control 2015, 57, 393-401. |
27 |
钱建平,余强毅,史云.基于区块链的农业投入品智能管控平台设计[J].农业大数据学报,2020,2(02):38-46.DOI:10.19788/j.issn.2096-6369.200204 .
doi: 10.19788/j.issn.2096-6369.200204 |
Qian J P, Yu Q Y, Shi Y,. Design of intelligent management and control platform for agricultural inputs based on blockchain [J]. Journal of Agricultural Big Data, 2020, 2(02): 38-46. DOI: 10.19788/j.issn.2096-6369.200204 .
doi: 10.19788/j.issn.2096-6369.200204 |
|
28 | Qian J.P.; Yang X.T.; Wu X.M. A traceability system incorporating 2D barcode and RFID technology for wheat flour mills. Computers and electronics in agriculture 2012, 89, 76-85. |
29 | Qian J.; Du X.; Zhang B. Optimization of QR code readability in movement state using response surface methodology for implementing continuous chain traceability. Computers and Electronics in Agriculture, 2017, 139, 56-64. |
30 | Caro M.P.; Ali M.S.; Vecchio M. Blockchain-based traceability in Agri-Food supply chain management: A practical implementation. 2018 IoT Vertical and Topical Summit on Agriculture-Tuscany (IOT Tuscany), IEEE, 2018; 1-4. |
31 | Tsang Y.P.; Choy K.L.; Wu C.H. Blockchain-driven IoT for food traceability with an integrated consensus mechanism. IEEE Access 2019, 7, 129000-129017. |
32 | Sen Saikat, Chakraborty Raja, De Biplab, Devanna N.An ethnobotanical survey of medicinal plants used by ethnic people in West and South district of Tripura, India[J].Journal of Forestry Research,2011,22(03):417-426. |
33 | Galvez J.F.; Mejuto J.C.; Simal-Gandara J. Future challenges on the use of blockchain for food traceability analysis. TrAC Trends in Analytical Chemistry 2018, 107, 222-232. |
[1] | 管博伦, 董伟, 张立平, 杨前进, 汪焱. 再生稻溯源追踪平台研发[J]. 农业大数据学报, 2023, 5(1): 55-67. |
[2] | 李佳利, 杨涵, 钱建平. 新冠肺炎疫情下中国农产品冷链物流可信追溯研究[J]. 农业大数据学报, 2022, 4(1): 14-24. |
[3] | 吴文斗, 周兵, 朱磊, 李青, 张勇, 字少奇, 刘天霞, 杨文庆, 唐兴萍. 基于STM32的山区核桃基地环境监测系统的设计[J]. 农业大数据学报, 2022, 4(1): 145-156. |
[4] | 张哲, 杨信廷, 于合龙, 李珊珊, 孙传恒. 基于区块链技术的生鲜农产品追溯系统研究进展[J]. 农业大数据学报, 2022, 4(1): 25-34. |
[5] | 周大森, 陈静, 张鑫, 李继兰, 李志成, 郑晓冬, 公维敏, 宋烨. 果蔬冷链追溯体系研究现状与应用建议[J]. 农业大数据学报, 2022, 4(1): 49-54. |
[6] | 张茜, 田乙慧, 肖文, 鲁燕. 大数据在农产品冷链物流中的应用[J]. 农业大数据学报, 2022, 4(1): 55-61. |
[7] | 刘佳, 夏晓蕾, 王丽娟, 王姝, 吕雪峰, 路长发, 孙利, 李素彩. 进口冷链食品追溯管理平台及创新应用[J]. 农业大数据学报, 2022, 4(1): 69-76. |
[8] | 陈晨. 新冠疫情下基于区块链技术的进口冷链食品追溯体系构建研究[J]. 农业大数据学报, 2022, 4(1): 77-81. |
[9] | 陈谦, 杨涵, 王宝刚, 李文生, 钱建平. 基于GRU神经网络模型的冷链运输温度时序预测[J]. 农业大数据学报, 2022, 4(1): 82-88. |
[10] | 周蓉蓉, 陈栋, 刘思远. 基于K均值聚类算法的生鲜运输路径优化模型[J]. 农业大数据学报, 2022, 4(1): 89-97. |
[11] | 贺苗, 李鑫, 朱志强, 冯建英. 基于PCA-GA-SVR的鲜食葡萄运输过程品质建模[J]. 农业大数据学报, 2022, 4(1): 98-108. |
[12] | 束雅莉, 饶元, 许磊. 基于边缘智能的茶叶可信品控系统设计与实现[J]. 农业大数据学报, 2021, 3(4): 40-50. |
[13] | 汪汇涓, 徐倩, 周爱莲, 梁晓贺, 谢能付, 李小雨, 吴赛赛. 区块链的发展历程及在农业领域的应用展望[J]. 农业大数据学报, 2021, 3(3): 76-86. |
[14] | 陈志军, 刘艳, 钱永忠. 基于风险熵的农产品安全定量评价研究[J]. 农业大数据学报, 2020, 2(4): 47-54. |
[15] | 郑雪静, 熊航. 区块链如何促进数据要素的价值实现:以食品供应链为例[J]. 农业大数据学报, 2020, 2(3): 13-20. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1107
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 550
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|