农业大数据学报 ›› 2025, Vol. 7 ›› Issue (2): 193-200.doi: 10.19788/j.issn.2096-6369.000063

• 数据管理 • 上一篇    下一篇

多学科通用型开放科学数据共享平台对比研究——以Zenodo和ScienceDB为例

贺郝钰1,2(), 侯春梅1,2, 孙力炜1,2, 迟秀丽1,2, 叶喜艳1,2   

  1. 1.中国科学院西北生态环境资源研究院 文献情报中心,兰州 730000
    2.甘肃省知识计算与决策智能重点实验室,兰州 730000
  • 收稿日期:2024-09-06 接受日期:2024-10-18 出版日期:2025-06-26 发布日期:2025-06-23
  • 作者简介:贺郝钰,E-mail:hehy@llas.ac.cn
  • 基金资助:
    中国科技期刊卓越行动计划选育高水平办刊人才子项目——青年人才支持项目

A Comparative Analysis of Multidisciplinary General-Purpose Scientific Data Platforms: Taking Zenodo and ScienceDB as Examples

HE HaoYu1,2(), HOU ChunMei1,2, SUN LiWei1,2, CHI XiuLi1,2, YE XiYan1,2   

  1. 1. Information Center, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2. Key Laboratory of Knowledge Computing and Intelligent Decision, Lanzhou 730000, China
  • Received:2024-09-06 Accepted:2024-10-18 Published:2025-06-26 Online:2025-06-23

摘要:

通过对两个具有代表性的多学科通用型科学数据共享平台——Zenodo和ScienceDB的比较分析,探讨它们在功能、服务、社区协作等方面的异同,并提出其各自的优势和潜在的改进空间。这一研究的意义在于为科研数据平台的优化和完善提供参考,促进科学数据的高效管理和利用,从而为科学研究的进步做出贡献。研究采用对比分析法,深入探讨了Zenodo和ScienceDB在数据存储、共享机制、用户界面设计、技术支持、社区互动、数据安全与隐私保护等方面的特点和差异。分析过程中,详细对比了两个平台的数据提交与描述、元数据要求、数据服务、数据统计和社区服务等多个方面,以评估它们在科研数据管理领域的服务能力与特色。Zenodo以其友好的用户界面、灵活的技术架构和强大的社区功能在国际上享有盛誉,而ScienceDB则凭借其对FAIR原则的遵循和对数据治理的重视,为中国乃至全球的科研数据共享提供了有力支持。两个平台各有优势,但也存在改进空间。Zenodo可以进一步强化数据的本地化服务,ScienceDB则可以借鉴Zenodo在社区管理的经验,提升用户体验。最终,两个平台的持续发展和优化将共同推动科学研究的进步和知识的传播。

关键词: 开放科学数据共享平台, Zenodo, ScienceDB, 多学科, 数据共享

Abstract:

The purpose of this study is to explore the similarities and differences between two representative multidisciplinary general-purpose scientific data platforms—Zenodo and ScienceDB—in terms of functionality, services, and community collaboration, and to propose their respective strengths and potential areas for improvement. The significance of this research lies in providing references for the optimization and improvement of scientific research data platforms, promoting the efficient management and utilization of scientific data, thereby contributing to the advancement of scientific research. The study employs a comparative analysis method to delve into the characteristics and differences of Zenodo and ScienceDB in aspects such as data storage capacity, sharing mechanisms, user interface design, technical support, community interaction, and data security and privacy protection. During the analysis process, a detailed comparison was made between the two platforms in terms of data submission and description, metadata requirements, data services, data statistics, and community services, to assess their service capabilities and features in the field of scientific data management. Zenodo enjoys a high reputation internationally with its user-friendly interface, flexible technical architecture, and robust community functions, while ScienceDB provides strong support for scientific data sharing in China and globally by adhering to the FAIR principles and emphasizing data governance. Both platforms have their advantages but also have room for improvement. Zenodo can further enhance its localized data services, and ScienceDB can learn from Zenodo's experience in community management to improve user experience. Ultimately, the continuous development and optimization of both platforms will jointly promote the progress of scientific research and the dissemination of knowledge.

Key words: scientific data platforms, Zenodo, ScienceDB, multidisciplinary, data sharing