Journal of Agricultural Big Data ›› 2021, Vol. 3 ›› Issue (3): 13-22.doi: 10.19788/j.issn.2096-6369.210302
Previous Articles Next Articles
Xiafei Jin1(), Xianguan Chen1, Zhihong Gong2, Liping Feng1()
Received:
2021-07-20
Online:
2021-09-26
Published:
2021-12-22
Contact:
Liping Feng
E-mail:1830546228@qq.com;fenglp@cau.edu.cn
CLC Number:
Xiafei Jin, Xianguan Chen, Zhihong Gong, Liping Feng. Parameter Adjustment and Optimization Methods for The WheatSM[J].Journal of Agricultural Big Data, 2021, 3(3): 13-22.
Table 1
The related parameters of the growth and yield of wheat in the WheatSM model"
参数名称 Parameter name | 描述 Definition | 取值范围 Range of value | 试错法 Trial-and-error method | PEST |
---|---|---|---|---|
K1 | 播种-出苗阶段基本发育系数 The basic development coefficient in sowing to emergence stage | -2.50~-1.00 | -1.20 | -1.00 |
P1 | 播种-出苗阶段温度系数 The temperature coefficient in sowing to emergence stage | 0.10~2.20 | 1.50 | 2.00 |
K21 | 春化作用阶段基本发育系数 The basic development coefficient in vernalization phase | -3.50~--2.00 | -1.94 | -3.00 |
P21 | 春化作用温度系数 The temperature coefficient in vernalization phase | 0.10~1.50 | 1.30 | 1.50 |
K22 | 光周期阶段基本发育系数 The basic development coefficient in photoperiod phase | -3.50~2.00 | -1.32 | -3.25 |
P22 | 光周期阶段温度系数 The temperature coefficient in photoperiod phase | 0.10~2.00 | 1.00 | 0.10 |
Q2 | 光周期阶段光周期系数 The genetic photoperiod coefficient in photoperiod phase | 0.10~3.00 | 1.72 | 0.66 |
K3 | 拔节-抽穗阶段基本发育系数 The basic development coefficient in jointing to heading stage | -3.50~2.00 | -3.09 | -3.00 |
P3 | 拔节-抽穗阶段温度系数 The temperature coefficient in jointing to heading stage | -0.10~2.00 | 1.97 | -0.10 |
K4 | 抽穗-成熟阶段基本发育系数 The basic development coefficient in heading to maturity stage | -3.50~-3.00 | -3.38 | -3.50 |
P4 | 抽穗-成熟阶段温度系数 The temperature coefficient in heading to maturity stage | 0.10~2.00 | 1.79 | 1.44 |
PA | 光-光合作用曲线初始斜率 The initial slope of the light-photosynthesis curve | 0.0135~0.0165 | 0.015 | 0.016 |
PMAX | 光饱时的最大光合强度/( The maximum photosynthetic intensity at light saturation point/( | 2.80~4.20 | 3.00 | 3.80 |
TR1 | 抽穗前茎鞘存储物向籽粒的转运效率 The transfer rate of stem and sheath to grain before headin/( | 0.01~1.00 | 0.20 | 0.20 |
TR2 | 抽穗后光合产物向籽粒的转运效率 The transfer rate of stem and sheath to grain after heading/(( | 0.10~1.00 | 0.95 | 0.90 |
Table 2
The values of measured and simulated of the growth period of the wheat of Shangzhuang, Beijing site during the parameters’adjusting from 2014 to 2015"
处理 Treatments | 方法 Methods | 2014 | 2015 | ||
---|---|---|---|---|---|
出苗期 Emergence | 拔节期 Jointing | 抽穗期 Heading | 成熟期 Maturity | ||
早播 | 实测 | 10月11日 | 4月8日 | 4月28日 | 6月4日 |
试错法 | 10月8日 | 4月6日 | 5月6日 | 6月8日 | |
PEST | 10月8日 | 4月11日 | 5月1日 | 6月8日 | |
中播 | 实测 | 10月23日 | 4月11日 | 4月30日 | 6月9日 |
试错法 | 10月18日 | 4月8日 | 5月7日 | 6月8日 | |
PEST | 10月18日 | 4月11日 | 5月1日 | 6月8日 |
Table 3
The values of measured and simulated of the growth period of the wheat of Shangzhuang, Beijing site during the parameters’ verifying from 2015 to 2016"
处理 Treatments | 方法 Methods | 2015 | 2016 | ||
---|---|---|---|---|---|
出苗期 Emergence | 拔节期 Jointing | 抽穗期 Heading | 成熟期 Maturity | ||
早播 | 实测 | 10月9日 | 4月7日 | 4月29日 | 6月12日 |
试错法 | 10月5日 | 4月3日 | 5月4日 | 6月6日 | |
PEST | 10月5日 | 4月9日 | 4月29日 | 6月5日 | |
中播 | 实测 | 10月21日 | 4月10日 | 5月3日 | 6月14日 |
试错法 | 10月15日 | 4月4日 | 5月5日 | 6月6日 | |
PEST | 10月15日 | 4月11日 | 5月1日 | 6月8日 |
1 | Kundu S. S., Skogerboe G. V., Walker W. R.. Using a crop growth simulation model for evaluating irrigation practices[J]. Agricultural Water Management, 1982(5):253-268. |
2 | Knörzer H., Grözinger H., Graeff-Hönninger S., et al. Integrating a simple shading algorithm into CERES-wheat and CERES-maize with particular regard to a changing microclimate within a relay-intercropping system[J]. Field Crops Research, 2011(121):274-285. |
3 | Graves A.R., Hess T., Matthews R.B., et al. Crop simulation models as tools in computer laboratory and classroombased education[J]. Journal of Natural Resources and Life Sciences Education, 2002(31):48-54. |
4 | 沈国权. 影响作物发育速度的非线性温度模式[J]. 气象, 1980,6(06):9-11. |
Shen G Q. Non-linear Temperature Model that Affects the Growth Rate of Crops [J]. Meteorological,1980,6(06):9-11. | |
5 | Weir A.H., et al. A winter wheat crop simulation model without water or nutrient limitations[J]. The Journal of Agricultural Science, 1984,102(2):371-382. |
6 | 高亮之,金之庆. 水稻计算机模拟模型及其应用之一:水稻钟模型——水稻发育动态的计算机模型[J]. 中国农业气象, 1989,10(03):3-10. |
Gao L Z, Jin Z Q. Rice Computer Simulation Model and One of Its Applications: Rice Clock Model-A Computer Model of Rice Development Dynamics [J]. Chinese Agricultural Meteorology, 1989,10(03):3-10. | |
7 | Jones J.W., Hoogenboom G., Porter C.H., et al. The DSSAT cropping system model[J]. European Journal of Agronomy, 2003, 18(3-4):235-265. |
8 | Brown D. M., Chapman L. J.. Soybean ecology: II Development temperature-moisture relationship from field studies[J]. Agronomy Journal, 1960(52):496-499. |
9 | 陈先冠, 冯利平, 白慧卿, 等. 基于小麦模型算法集成平台的三种水分胁迫算法比较[J].农业工程学报, 2021, 37(16):47-57. |
Chen X G, Feng L P, Bai H Q, et al. Comparison of three water stress algorithms based on the integration platform of wheat model algorithms[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16):47-57. | |
10 | Ritchie J. T., Otter S.. Description and Performance of CERES-Wheat: A User-Oriented Wheat Yield Model[J]. Willis W O, ARS Wheat Yield Project, 1985, US: USDA-ARS, ARS-38. |
11 | Keating B. A., Carberry P. S., Hammer G. L., et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3-4):267-288. |
12 | Allard D W, Hendrik B, Davide F, et al. 25 years of the WOFOST cropping systems model[J]. Agricultural Systems, 2019, 168: 154-167. |
13 | 杨妍辰,王建林,宋迎波. WOFOST作物模型机理及使用介绍[J]. 气象科技进展, 2013(5):29-35. |
Yang Y C,Wang J L,Song Y B. Introduction to the Mechanism and Use of WOFOST Crop Model[J]. Meteorological science and technology progress, 2013(5):29-35. | |
14 | 赵诗奎. 基于遗传算法的柔性资源调度优化方法研究[D]. 杭州:浙江大学, 2013. |
Zhao S K. Research on Optimization Method of Flexible Resource Scheduling Based on Genetic Algorithm[D]. Hangzhou: Zhejiang University, 2013. | |
15 | 庄嘉祥,姜海燕,刘蕾蕾,等. 基于个体优势遗传算法的水稻生育期模型参数优化[J]. 中国农业科学, 2013,46(11):2220-2231. |
Zhuang J X,Jiang H Y, Liu L L,et al. Parameters Optimization of Rice Development Stages Model Based on Individual Advantages Genetic Algorithm [J]. Scientia Agricultura Sinica, 2013,46(11):2220-2231. | |
16 | Beven K., Freer J.. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology[J]. Journal of Hydrology, 2001, 249(1-4):0-29. |
17 | 姚宁, 周元刚, 宋利兵, 等. 不同水分胁迫条件下DSSAT-CERES-Wheat模型的调参与验证[J]. 农业工程学报, 2015, 31(012):138-150. |
Yao N,Zhou Y G,Song L B,et al. Validation of DSSAT-CERES-Wheat Model Under Different Water Stress Conditions[J]. Journal of Agricultural Engineering, 2015, 31(012):138-150. | |
18 | Mohamed A.. Multi-objective design approach of passive filters for single-phase distributed energy grid integration systems using particle swarm optimization[J]. Elsevier Ltd, 2020:157-172. |
19 | 奚茂龙, 卢丹, 齐志明, 等. 随机漂移粒子群算法的RZWQM替代模型参数优化[J]. 计算机工程与应用, 2016(23) : 35-41. |
Xi M L, Lu D, Qi Z M, et al. Optimization of RZWQM Alternative Model Parameters Based on Random Drift Particle Swarm Optimization[J]. Computer Engineering and Applications, 2016(23) : 35-41. | |
20 | Doherty J.. PEST, Model-Independent Parameter Estimation User Manual: 5th Edition. Brisbane, Australia: Watermark Numerical Computing, 2004. |
21 | 梁浩, 胡克林, 李保国. 基于PEST的土壤-作物系统模型参数优化及灵敏度分析[J]. 农业工程学报, 2016(3):78-85. |
Liang H, Hu K L, Li B G. Parameter optimization and sensitivity analysis of soil-crop system model based on PEST[J]. Journal of Agricultural Engineering, 2016(3):78-85. | |
22 | 冯利平, 高亮之, 金之庆, 等. 小麦发育期动态模拟模型的研究[J]. 作物学报, 1997,23(04):418-424. |
Feng L P,Gao L Z,Jin Z Q,et al. Study on the Dynamic Simulation Model of Wheat Development Period[J]. Acta Agronomica, 1997,23(04):418-424. | |
23 | 胡克林, 李保国, 吕贻忠, 等.中国农业大学上庄实验站土壤理化性质的空间分布特征[J].中国农业大学学报,2006(06):27-33. |
Hu K L,Li B G,Lv Y Z, et al. Spatial Distribution Characteristics of Soil Physical and Chemical Properties in Shangzhuang Experimental Station of China Agricultural University[J].Journal of China Agricultural University, 2006 (06): 27-33. | |
24 | 孙美, 张晓琳, 冯绍元, 等. 基于PEST的RZWQM2模型参数优化与验证[J]. 农业机械学报, 2014(11):151-158. |
Sun M,Zhang X L,Feng S Y, et al. Optimization and Verification of RZWQM2 Model Parameters Based on PEST[J]. Journal of Agricultural Machinery, 2014(11):151-158. | |
25 | 王礼恒等. 基于PEST的地下水数值模拟参数优化的应用[J]. 工程勘察, 2014,42(03):38-42. |
Wang L H,et al. Application of PEST-based Groundwater Numerical Simulation Parameter Optimization[J]. Engineering Investigation, 2014,42(03):38-42. | |
26 | 冯利平. 小麦生长发育模拟模型(WHEATSM) 的研究[D]. 南京:南京农业大学, 1995. |
Feng L P. Research on Wheat Growth and Development Simulation Model (WHEATSM) [D]. Nanjing: Nanjing Agricultural University, 1995. | |
27 | 诸叶平, 李世娟, 李书钦. 作物生长过程模拟模型与形态三维可视化关键技术研究[J]. 智慧农业(中英文), 2019, 1(1): 53-66. |
Zhu Y P, Li S J, Li S Q. Research on key technologies of crop growth process simulation model and morphological 3D visualization[J]. Smart Agriculture, 2019, 1(1): 53-66. | |
28 | 高亮之, 金之庆, 黄耀, 等. 农业模型学[M]. 北京:气象出版社, 2019. |
Gao L Z,Jin Z Q,Huang Y, et al. Agricultural Modeling[M]. Beijing: Meteorological Press, 2019. | |
29 | 郭其乐,李颖,田宏伟. 小麦生长发育模型WheatSM参数优化及适用性分析[J]. 麦类作物学报, 2017,37(12):1571-1580. |
Guo Q L,Li Y,Tian H W. Parameter Optimization and Applicability Analysis of Wheat Growth and Development Model WheatSM[J]. Journal of Triticeae Crops, 2017,37(12):1571-1580. | |
30 | 曹宏鑫, 葛道阔, 张文宇, 等. 农业模型发展分析及应用案例[J]. 智慧农业(中英文), 2020, 2(1): 147-162. |
Cao H X, Ge D K, Zhang W Y, et al. Developmental analysis and application examples for agricultural models[J]. Smart Agriculture, 2020, 2(1): 147-162. | |
31 | 张志刚. 基于遗传算法的模糊控制器的优化和研究[D]. 太原理工大学, 2005. |
Zhang Z G. Optimization and Research of Fuzzy Controller Based on Genetic Algorithm[D]. Taiyuan University of Technology, 2005. |
[1] | Xinglong Liu, Yu Wang, Xiaoxi Wang, Keqin Wang. A Dataset of Coccinellidae in Farmlands in Harbin, Heilongjiang Province from 2018 to 2021 [J]. Journal of Agricultural Big Data, 2022, 4(4): 39-44. |
[2] | Jiayun Chen, Xiangying Xu, Yonglong Zhang, Ye Zhou, Hongjiang Wang, Changwei Tan. Research Progress of Multimodal Knowledge Graph in Agriculture [J]. Journal of Agricultural Big Data, 2022, 4(3): 126-134. |
[3] | Xianghe Zhang, Xiaoli Wang, Tingting Liu, Lin Hu, Jingchao Fan. Image Data Set of Six Common Orchard Pests such as Bactrocera Dorsalis [J]. Journal of Agricultural Big Data, 2022, 4(1): 114-118. |
[4] | Yijun Meng, Xiaolei Qiu, Leilei Liu, Bing Liu, Yan Zhu, Weixing Cao, Liang Tang. Sensitivity Analysis of Genetic Parameters of RiceGrow Model [J]. Journal of Agricultural Big Data, 2021, 3(3): 23-32. |
[5] | Fei Gao, Xiaoli Wang, Tingting Liu, Zhuang Li, Rui Man. Spectral and Imaging Datasets of Apple Leaf Disease and Insect Pests in China in 2015 [J]. Journal of Agricultural Big Data, 2020, 2(4): 120-124. |
[6] | Xiaoyan Zhang, Li Meng, Lili Wang, Feng Liu, Jiajia Liu, Decheng Lu. Analysis of the Price Fluctuation Characteristics of China’s Wheat Market Using Big Data: A Case Study of Shandong Province [J]. Journal of Agricultural Big Data, 2020, 2(3): 75-83. |
[7] | Guohui Ding,Hao Xu,Mingxing Wen,Jiawei Chen,Xiue Wang,Ji Zhou. Developing cost-effective and low-altitude UAV aerial phenotyping and automated phenotypic analysis to measure key yield-related traits for bread wheat [J]. Journal of Agricultural Big Data, 2019, 1(2): 19-31. |
|