Journal of Agricultural Big Data ›› 2021, Vol. 3 ›› Issue (3): 23-32.doi: 10.19788/j.issn.2096-6369.210303
Previous Articles Next Articles
Yijun Meng1,2,3,4,5,6(), Xiaolei Qiu1,2,3,4,5,6, Leilei Liu1,2,3,4,5,6, Bing Liu1,2,3,4,5,6, Yan Zhu1,2,3,4,5,6, Weixing Cao1,2,3,4,5,6, Liang Tang1,2,3,4,5,6(
)
Received:
2021-08-25
Online:
2021-09-26
Published:
2021-12-22
Contact:
Liang Tang
E-mail:NJAUmyj@126.com;tangl@njau.edu.cn
CLC Number:
Yijun Meng, Xiaolei Qiu, Leilei Liu, Bing Liu, Yan Zhu, Weixing Cao, Liang Tang. Sensitivity Analysis of Genetic Parameters of RiceGrow Model[J].Journal of Agricultural Big Data, 2021, 3(3): 23-32.
Table 1
Genetic parameters and output variables in RiceGrow of sensitivity study"
品种参数 Genetic parameters | 定义 Definition | 范围 Range |
---|---|---|
叶面积相对生长速率(d-1℃) Relative growth rate of LAI(LAIRGR) | 叶面积相对生长速率 | 0.004-0.0075 |
基本早熟性 Intrinsic earliness (IE) | 对不同基因型基本营养阶段所需生理发育时间相对差异的量化 | 0-1 |
光周期敏感性 Photoperiod sensitivity(PS) | 影响水稻的光周期敏感阶段(从光敏感开始至二次枝梗分化期),值越大感光性越强 | 0-10 |
温度敏感性 Temperature sensitivity(TS) | 品种特定的参数,TS越大品种对温度反应越敏感 | 0-20 |
基本灌浆因子 Basic filling factor(BFF) | 反应水稻从抽穗到成熟期的长短的量 | 0-1 |
收获指数 Harvest index(HI) | 收获时经济产量(籽粒、果实等)与生物产量之比 | 0.3-0.7 |
最适温度(℃) Optimum temperature(OT) | 作物生长的最适宜温度 | 15-35 |
最大光合速率(kg CH2O ha-1 h-1) Maximum CO2 assimilation rate (AMX) | 最大光合速率 | 20-75 |
比叶面积(10-4m2g-1) Specific leaf area(SLA) | 叶的单面面积与其干重之比 | 100-300 |
消光系数参数 Parameter of extinction coefficient(EC) | 用于量化消光系数的特征参数 | 0.0001-0.0138 |
Fig.1
Sensitivity of genetic parameters to growth period, yield and total dry matter under different climatic conditions at baseline temperature (From left to right are Hefei in Anhui, Gaoyao in Guangdong, Jiangkou in Guizhou, Wuchang in Heilongjiang, Ningdu in Jiangxi, Xinbin in Liaoning, Mianyang in Sichuan, Xichang in Sichuan, Gengma in Yunnan. OT: Optimum temperature; BFF:Basic filling factor; TS:Temperature sensitivity;PS:Photoperiod sensitivity; IE:Intrinsic earliness; LAIRGR:Relative growth rate of LAI; EC:Parameter of extinction coefficient; SLA:Specific leaf area; AMX: Maximum CO2 assimilation rate; HI:Harvest index.)"
Fig.2
Sensitivity of genetic parameters to growth period, yield and total dry matter weight under different climate conditions with temperature increase of 2.0 ℃ (From left to right are Hefei in Anhui, Gaoyao in Guangdong, Jiangkou in Guizhou, Wuchang in Heilongjiang, Ningdu in Jiangxi, Xinbin in Liaoning, Mianyang in Sichuan, Xichang in Sichuan, Gengma in Yunnan. OT: Optimum temperature; BFF:Basic filling factor; TS:Temperature sensitivity;PS:Photoperiod sensitivity; IE:Intrinsic earliness; LAIRGR:Relative growth rate of LAI; EC:Parameter of extinction coefficient; SLA:Specific leaf area; AMX: Maximum CO2 assimilation rate; HI:Harvest index.)"
Table 3
Consistency test of parameter sensitivity index in different regions"
输出变量 | 历史 Baseline | 增温2.0℃ Increase by 2.0℃ | ||
---|---|---|---|---|
Output | ||||
variables | TDCC | P value | TDCC | P value |
开花 Anthesis | 0.7552 | 0.024 | 0.6526 | 0.0315 |
成熟 Maturity | 0.5956 | 0.0635 | 0.5465 | 0.0397 |
全生育期 Growth duration | 0.4319 | 0.0713 | 0.4655 | 0.0862 |
产量 Yield | 0.341 | 0.1203 | 0.4613 | 0.0996 |
总干物质量 Total dry matter | 0.53 | 0.0648 | 0.5906 | 0.0647 |
Table 4
Parameter consistency index consistency test under different climate scenarios"
输出变量 | 开花 | 成熟 | 全生育期 | 产量 | 总干物质量 | |
---|---|---|---|---|---|---|
Output variables | Anthesis | Maturity | Growth duration | Yield | Total dry matter | |
合肥 | TDCC | 1 | 0.5348 | 0.4491 | 0.8107 | 0.4536 |
Hefei | P value | 6E-09 | 0.126 | 0.149 | 0.0796 | 0.23 |
高要 | TDCC | 0.6435 | 0.5654 | 0.2497 | 0.8184 | 0.8188 |
Gaoyao | P value | 0.0941 | 0.1178 | 0.1839 | 0.0838 | 0.0758 |
江口 | TDCC | 0.3841 | 0.2855 | 0.2114 | 0.8557 | 0.9348 |
Jiangkou | P value | 0.1913 | 0.1822 | 0.1815 | 0.0531 | 0.0572 |
五常 | TDCC | 0.7101 | 0.8044 | 0.5769 | 0.891 | 1 |
Wuchang | P value | 0.0978 | 0.0644 | 0.1148 | 0.1286 | 6E-09 |
宁都 | TDCC | 0.942 | 0.9425 | 0.9374 | 0.9673 | 0.942 |
Ningdu | P value | 0.0468 | 0.0635 | 0.0541 | 0.0606 | 0.0468 |
新宾 | TDCC | 1 | 0.7687 | 0.5386 | 0.9034 | 0.471 |
Xinbin | P value | 6E-09 | 0.071 | 0.1249 | 0.0471 | 0.1632 |
绵阳 | TDCC | 1 | 0.9885 | 0.876 | 0.6458 | 0.8623 |
Mianyang | P value | 6E-09 | 0.0379 | 0.0527 | 0.0711 | 0.0683 |
西昌 | TDCC | 0.5435 | 0.4006 | 0.4466 | 0.8392 | 0.5536 |
Xichang | P value | 0.1411 | 0.1614 | 0.1497 | 0.0654 | 0.093 |
耿马 | TDCC | 0.942 | 0.5654 | 0.8377 | 0.775 | 1 |
Gengma | P value | 0.0468 | 0.1178 | 0.0587 | 0.0906 | 6E-09 |
1 | 曹卫星,罗卫红. 作物系统模拟及智能管理[M]. 北京: 高等教育出版社, 2003. |
Cao W X, Luo W H. Crop system simulation and intelligent management[M]. Beijing: Higher Education Press, 2003.(in Chinese with English) | |
2 | Anon. Simulation of crop and water productivity for rice (Oryza Sativa L.) Using APSIM under diverse agro-climatic conditions and water nanagement techniques in Sri Lanka[J]. Agricultural Water Management, 2015, 160: 132-143. |
3 | Boogaard H,Wolf J,Supit I, et al. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European union[J]. Field Crops Research, 2013, 143(Sp. Iss. SI): 130-142. |
4 | Wit AD,Duveiller G,Defourny P. Estimating regional winter wheat yield with WOFOST through the assimilation of green area index retrieved from modis observations[J]. Agricultural & Forest Meteorology, 2012, 164: 39-52. |
5 | Aggarwal PK,Mall RK. Climate change and rice yields in diverse Agro-environments of India. I. Effect of uncertainties in scenarios and crop models on impact assessment[J]. Climatic Change, 2002, 52(3): 331-343. |
6 | Confalonieri R,Bellocchi G,Bregaglio S, et al. Comparison of sensitivity analysis techniques: a case study with the rice model warm[J]. Ecological Modelling, 2010, 221(16): 1897-1906. |
7 | Liu J, Liu Z, Zhu A, et al. Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions[J]. Science of the Total Environment, 2019, 651(189): 953-968. |
8 | Xing H M, Xiang S Y, Xin GX, et al. Global sensitivity analysis of AquaCrop crop model parameters based on EFAST method[J]. Scientia Agricultura Sinica, 2017,16(11): 2444-2458. |
9 | Vazquez-cruz MA,Guzman-cruz R,Lopez-cruz IL, et al. Global sensitivity analysis by means of EFAST and Sobol’ methods and calibration of reduced state-variable TOMGRO model using genetic algorithms[J]. Computers & Electronics in Agriculture, 2014, 100(46): 1-12. |
10 | Vanuytrecht E,Raes D,Willems P. Global sensitivity analysis of yield output from the water productivity model AquaCrop[J]. Environmental Modelling & Software, 2014, 51(1): 323-332. |
11 | 何亮,赵刚,靳宁,等. 不同气候区和不同产量水平下APSIM-Wheat模型的全局敏感性分析[J]. 农业工程学报, 2015, 031(14): 148-157. |
He L, Zhao G, Jin N, et al. Global sensitivity analysis of APSIM-Wheat model in different climate regions and different yield levels[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 031(14): 148-157. (in Chinese with English) | |
12 | 陈艳玲,顾晓鹤,宫阿都. 基于EFAST方法的WOFOST作物模型参数敏感性分析[J]. 河南理工大学学报, 2018, 182(3): 77-83. |
Chen Y L, Gu X H, Gong A D. Sensitivity analysis of WOFOST crop model parameters based on EFAST method[J]. Journal of Henan Polytechnic University, 2018, 182(3): 77-83. (in Chinese with English) | |
13 | Tang L, Zhu Y, Hannaway D, et al. Ricegrow: a rice growth and productivity model[J]. NJAS: Wageningen Journal of Life Sciences, 2009, 57(1): 83-92. |
14 | 汪欢欢. 未来气候条件下水稻生产力模拟研究[D]. 南京:南京农业大学, 2014. |
Wang H H. Research on rice productivity simulation under future climate conditions[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese with English) | |
15 | Yu Y, Zhang W, Huang Y. Impact assessment of climate change, carbon dioxide fertilization and constant growing season on rice yields in China[J]. Climatic Change, 2014, 124(4): 763-775. |
16 | 宋明丹,冯浩,李正鹏,等. 基于Morris和EFAST的CERES-Wheat模型敏感性分析[J]. 农业机械学报, 2014, 45(10): 124-131. |
Song M D, Feng H, Li Z P, et al. Global sensitivity analyses of DSSAT-CERES-Wheat model using Morris and EFAST methods[J]. Journal of Agricultural Machinery, 2014, 45(10): 124-131. | |
17 | Berenbrink P,Brinkmann A,Scheideler C. Simlab-a simulation environment for storage area networks[C]. Euromicro Workshop on Parallel & Distributed Processing, 2001. |
18 | 许一骅. 领域知识引导的作物模型参数智能优化框架研究[D]. 南京:南京农业大学, 2015. |
Xu Y H. Research on the intelligent optimization framework of crop model parameters guided by domain knowledge[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English) | |
19 | Helton JC,Davis FJ,Johnson JD. A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling[J]. Reliability Engineering & System Safety, 2005, 89(3): 305-330. |
20 | 梁浩,胡克林,李保国. 基于PEST的土壤-作物系统模型参数优化及灵敏度分析[J]. 农业工程学报, 2016, 32(03): 78-85. |
Liang H, Hu K L, Li B G. PEST-based soil-crop system model parameter optimization and sensitivity analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(03): 78-85. (in Chinese with English) | |
21 | 郭浩. 基于EPIC模型的区域水稻作物参数敏感性分析[D]. 金华:浙江师范大学, 2015. |
Guo H. Sensitivity analysis of regional rice crop parameters based on EPIC model[D]. Jinhua: Zhejiang Normal University, 2015. (in Chinese with English) |
[1] | Xiafei Jin, Xianguan Chen, Zhihong Gong, Liping Feng. Parameter Adjustment and Optimization Methods for The WheatSM [J]. Journal of Agricultural Big Data, 2021, 3(3): 13-22. |
[2] | Ayitula Maimaitizunong, Shuai Yanju, Haodong Wei, Zhen He, Qinxi Xiao, Qiong Hu, Baodong Xu, Liangzhi You, Cougui Cao, Lin Ling. Evaluation of Green Development of Rice-Based Cropping Systems Using Remote Sensing Data and the DNDC Model: Case Study of Qianjiang City [J]. Journal of Agricultural Big Data, 2021, 3(3): 33-44. |
[3] | Juan Yang, Tingting Qian, Xiuguo Zheng, Jingyin Zhao, Yeying Xu. Analysis on Transmission Mechanism of Short-Term Fluctuation of Vegetable Prices: An Example Study of Pak Choi in Shanghai [J]. Journal of Agricultural Big Data, 2020, 2(3): 31-41. |
[4] | Hebing Liu, Jingjing Han, Xinming Ma, Lei Xi. Research on Agricultural Product Price Prediction Based on the EMD-ELM Mode [J]. Journal of Agricultural Big Data, 2020, 2(3): 68-74. |
[5] | Xiaoyan Zhang, Li Meng, Lili Wang, Feng Liu, Jiajia Liu, Decheng Lu. Analysis of the Price Fluctuation Characteristics of China’s Wheat Market Using Big Data: A Case Study of Shandong Province [J]. Journal of Agricultural Big Data, 2020, 2(3): 75-83. |
[6] | Guohui Ding,Hao Xu,Mingxing Wen,Jiawei Chen,Xiue Wang,Ji Zhou. Developing cost-effective and low-altitude UAV aerial phenotyping and automated phenotypic analysis to measure key yield-related traits for bread wheat [J]. Journal of Agricultural Big Data, 2019, 1(2): 19-31. |
[7] | Guoxin Dai,Guoxin Chen,Wanneng Yang,Hui Feng. Measurement Technology of Quality Parameters of Rice Grain Based on Hyperspectral Imaging on the Visible-near Infrared [J]. Journal of Agricultural Big Data, 2019, 1(2): 51-63. |
|