Journal of Agricultural Big Data ›› 2023, Vol. 5 ›› Issue (4): 130-137.doi: 10.19788/j.issn.2096-6369.230417
Previous Articles Next Articles
LI LingYue1,2(), XIONG Hang1,2, HE Juan1,*(
)
Received:
2023-09-02
Accepted:
2023-10-14
Online:
2023-12-26
Published:
2024-01-05
LI LingYue, XIONG Hang, HE Juan. Statistical Dataset of Egg Consumption Preference Survey in China in 2020[J].Journal of Agricultural Big Data, 2023, 5(4): 130-137.
Table 2
Respondents’ egg consumption habits"
统计特征 | 分类指标 | 样本数量 | 比例(%) |
---|---|---|---|
购买频率 | 1-3天 | 140 | 12.90 |
4-7天 | 577 | 53.18 | |
8-15天 | 295 | 27.19 | |
16-30天 | 61 | 5.62 | |
> 30天 | 12 | 1.11 | |
购买来源 | 菜市场 | 235 | 21.66 |
大型超市 | 523 | 48.20 | |
小超市或生鲜小店 | 163 | 15.02 | |
小摊贩、地摊、市集 | 38 | 3.50 | |
村里/亲戚家 | 38 | 3.50 | |
生鲜app/微信/外卖 | 59 | 5.44 | |
淘宝、京东、拼多多等电商平台 | 17 | 1.57 | |
自家养鸡 | 10 | 0.92 | |
其他 | 2 | 0.18 | |
购买价格 | < 6元/斤(< 0.6元/枚) | 142 | 13.09 |
[6, 8)元/斤([0.6, 0.8)元/枚) | 330 | 30.41 | |
[8, 10)元/斤([0.8, 1.0)元/枚) | 336 | 30.97 | |
[10, 12)元/斤([1.0, 1.2)元/枚) | 175 | 16.13 | |
[12, 14)元/斤([1.2, 1.4)元/枚) | 68 | 6.27 | |
≥ 14元/斤(≥ 1.4元/枚) | 22 | 2.03 | |
不确定 | 12 | 1.11 | |
购买数量 | < 0.5斤(< 5枚) | 8 | 0.74 |
[0.5, 1)斤([6, 10)枚) | 207 | 19.08 | |
[1, 2)斤([10, 20)枚) | 499 | 45.99 | |
[2, 3)斤([20, 30)枚) | 286 | 26.36 | |
≥ 3斤(≥ 30枚) | 81 | 7.47 | |
不确定 | 4 | 0.37 |
Table 3
Respondents' considerations in purchasing eggs"
关注因素 | 很不关注 | 不太关注 | 一般关注 | 比较关注 | 十分关注 | 总体均值 |
---|---|---|---|---|---|---|
价格 | 11 (1.01%) | 99 (9.12%) | 391 (36.04%) | 432 (39.82%) | 152 (14.01%) | 3.57 |
饲养方式 | 10 (0.92%) | 99 (9.12%) | 307 (28.29%) | 421 (38.80%) | 248 (22.86%) | 3.74 |
是否土鸡蛋 | 10 (0.92%) | 94 (8.66%) | 248 (22.86%) | 412 (37.97%) | 321 (29.59%) | 3.87 |
新鲜程度 | 1 (0.09%) | 10 (0.92%) | 69 (6.36%) | 317 (29.22%) | 688 (63.41%) | 4.55 |
品牌 | 46 (4.24%) | 266 (24.52%) | 433 (39.91%) | 263 (24.24%) | 77 (7.10%) | 3.05 |
食品安全认证 | 7 (0.65%) | 39 (3.59%) | 163 (15.02%) | 443 (40.83%) | 433 (39.91%) | 4.16 |
颜色 | 28 (2.58%) | 180 (16.59%) | 400 (36.87%) | 378 (34.84%) | 99 (9.12%) | 3.31 |
包装 | 83 (7.65%) | 289 (26.64%) | 461 (42.49%) | 199 (18.34%) | 53 (4.88%) | 2.86 |
大小 | 56 (5.16%) | 179 (16.50%) | 394 (36.31%) | 364 (33.55%) | 92 (8.48%) | 3.24 |
[1] | YANG N. Egg production in China: current status and outlook[J]. Frontier of Agricultural Science and Engineering, 2021, 8(1):25-34. |
[2] | 罗彦青. 中国蛋鸡养殖业发展现状及建议[J]. 乡村科技, 2012, 28(10): 11-11. |
[3] | 王文智, 武拉平. 城镇居民对猪肉的质量安全属性的支付意愿研究——基于选择实验(Choice Experiments)的分析[J]. 农业技术经济, 2013, 32(11):24-31. |
[4] | 杨晓晗. 消费者对猪肉的属性偏好及支付意愿研究[D]. 南京:南京农业大学[J], 2016. |
[5] | 彭燕, 郭婧怡, 郭锦墉. 认知、情感与消费者品牌牛肉溢价支付意愿:基于ABC态度模型[J]. 江西畜牧兽医杂志, 2019, 38(4):1-8. |
[6] | 宋洪杰. 消费者对不同安全认证食品的偏好[D]. 山东曲阜: 曲阜师范大学, 2014. |
[7] | 邢青青. 食品营养、有机和原产国标签对消费者支付意愿的影响研究[D]. 南京: 南京农业大学, 2019. |
[8] | 吴林海, 秦沙沙, 朱淀, 等. 可追溯猪肉原产地属性与可追溯信息属性的消费者偏好分析[J]. 中国农村经济, 2015(6):47-62+73. |
[9] | 吴林海, 王淑娴, Wuyang HU. 消费者对可追溯食品属性的偏好和支付意愿:猪肉经济为例[J]. 中国农村经济, 2014, 30(8):58-75. |
[10] | 张玉梅, 刘增金, 乔娟. 陈述性偏好研究视角下可追溯牛肉的市场需求分析——基于北京市的实地调研[J]. 消费经济, 2014, 30(6): 50-54. |
[11] | 郭世娟, 李华. 消费者对可追溯鸡蛋的支付意愿及影响因素分析——基于北京市396位消费者的调查[J]. 中国家禽, 2017, 39(12): 73-76. |
[12] | 白军飞, 罗津京, 张彩萍. 消费者对可追溯牛奶的支付意愿:基于属性不在场的选择实验[J]. 中国食物与营养, 2019, 25(8):57-62. |
[13] | 张晋科, 韩纪琴. 基于选择试验法的有机食品信任偏好调查——以有机牛奶为例[J]. 江苏农业科学, 2016, 44(5):583-587. |
[14] | LIZIN S, ROUSSEAU S, KESSELS R, et al. The state of the art of discrete choice experiments in food research[J/OL]. Food Quality and Preference, 2022, 102:104678. https://doi.org/10.1016/j.foodqual.2022.104678. |
[15] |
PENN J, HU W. Understanding hypothetical bias: An enhanced Meta- analysis[J]. American Journal of Agricultural Economics, 2018, 100(4):1186-1206.
doi: 10.1093/ajae/aay021 |
[1] | LIU YuJie, LIAN XiaoQin, ZHAO ZhiYao, LI Yue, ZHANG Xin. Research on Trusted Management of Blockchain-based Food Safety Knowledge Graph [J]. Journal of Agricultural Big Data, 2023, 5(3): 69-82. |
[2] | Miao He, Xin Li, Zhiqiang Zhu, Jianying Feng. Modeling Table Grapes: Physicochemical Indexes and Sensory Quality Based on PCA-GA-SVR during Transportation Process [J]. Journal of Agricultural Big Data, 2022, 4(1): 98-108. |
[3] | Qian Chen, Han Yang, Baogang Wang, Wensheng Li, Jianping Qian. Time Series Prediction of Cold-chain Transportation Temperature Based on GRU Neural Network Model [J]. Journal of Agricultural Big Data, 2022, 4(1): 82-88. |
[4] | Chen Chen. Research on the Construction of a Traceability System for Imported Cold Chain Food Based on Blockchain Technology under COVID-19 [J]. Journal of Agricultural Big Data, 2022, 4(1): 77-81. |
[5] | Jia Liu, Xiaolei Xia, Lijuan Wang, Shu Wang, Xuefeng Lv, Changfa Lu, Li Sun, Sucai Li. Imported Cold Chain Food Traceability Management Platform and Innovative Application [J]. Journal of Agricultural Big Data, 2022, 4(1): 69-76. |
[6] | Qian Zhang, Yihui Tian, Wen Xiao, Yan Lu. Application of Big Data Technology in Cold Chain Logistics of Agricultural Products [J]. Journal of Agricultural Big Data, 2022, 4(1): 55-61. |
[7] | Dasen Zhou, Jing Chen, Xin Zhang, Jilan Li, Zhicheng Li, Xiaodong Zheng, Weimin Gong, Ye Song. Research Status and Application Suggestions on Fruit and Vegetable Cold Chain Traceability System [J]. Journal of Agricultural Big Data, 2022, 4(1): 49-54. |
[8] | Xin Zhang, Xiangzhen Peng, Yue Li, Xiaoyi Wang, Zhiyao Zhao, Jiping Xu. Information Traceability Model for the Grain and Oil Food Supply Chain Based on Trusted Identification and Trusted Blockchain [J]. Journal of Agricultural Big Data, 2022, 4(1): 35-48. |
[9] | Zhe Zhang, Xinting Yang, Helong Yu, Shanshan Li, Chuanheng Sun. Progress of Research to Develop a Traceability System for Fresh Agricultural Products Using Blockchain Technology [J]. Journal of Agricultural Big Data, 2022, 4(1): 25-34. |
[10] | Jiali Li, Han Yang, Jianping Qian. An Credible Traceability System for Cold Chain Logistics Developed for China’s Agricultural Products in the Context of COVID-19 [J]. Journal of Agricultural Big Data, 2022, 4(1): 14-24. |
[11] | Zhijun Chen, Yan Liu, Yongzhong Qian. Quantitative Evaluation of Agricultural Product Safety Based on Risk Entropy [J]. Journal of Agricultural Big Data, 2020, 2(4): 47-54. |
[12] | Min Zuo, Siyu He, Qingchuan Zhang, Shuangshun Yao. Research on Food Source Traceability Technology Based on Blockchain [J]. Journal of Agricultural Big Data, 2020, 2(3): 52-60. |