农业大数据学报 ›› 2020, Vol. 2 ›› Issue (3): 52-60.doi: 10.19788/j.issn.2096-6369.200306

• 专题——农业供应链 • 上一篇    下一篇

基于区块链的食品溯源技术研究

左敏(), 何思宇, 张青川(), 姚双顺   

  1. 北京工商大学农产品质量安全追溯技术及应用国家工程实验室,北京 100048
  • 收稿日期:2020-07-18 出版日期:2020-09-26 发布日期:2020-10-30
  • 通讯作者: 张青川 E-mail:zuomin1234@163.com;zhangqingchuan@btbu.edu.cn
  • 作者简介:左敏,男,博士,研究方向:食品安全大数据,食品安全追溯,人工智能; E-mail: zuomin1234@163.com
  • 基金资助:
    国家重点研发计划:食品品质质量智能化追溯技术(2016YFD0401205);北京市自然科学基金项目:面向食品安全领域的中文舆情语义分析关键技术研究(4202014);教育部人文社会科学研究青年基金项目:面向食品安全舆情监控的微博谣言识别技术研究(20YJCZH229)

Research on Food Source Traceability Technology Based on Blockchain

Min Zuo(), Siyu He, Qingchuan Zhang(), Shuangshun Yao   

  1. National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
  • Received:2020-07-18 Online:2020-09-26 Published:2020-10-30
  • Contact: Qingchuan Zhang E-mail:zuomin1234@163.com;zhangqingchuan@btbu.edu.cn

摘要:

区块链由于其可信及不可篡改等技术特性天然适用于食品溯源系统,区块链技术在食品溯源领域的落地应用也越来越多。然而区块链在现有食品溯源系统的应用中,存在着食品溯源场景节点众多、区块链网络负载大、网络延时较长等问题。针对以上存在的问题,引入解释结构模型(Interpretative Structural Modeling, ISM)分层思想,对联盟区块链中常用的传统实用拜占庭容错(Practical Byzantine Fault Tolerance, PBFT)共识机制进行优化,以提升现有追溯系统性能。即通过区块链节点间的交易关系构建解释结构模型,对区块链共识节点进行分层,建立区块链共识节点分层体系,然后对分层后的区块链共识节点进一步进行分块,划分多个参与网络共识的子节点集群,再以多中心子节点集群分块进行PBFT共识。最后,共识中心节点将共识结果提交区块,实现总体共识。在来自于北京市农业农村局与北京市畜牧总站合作建立的智能禽舍及基于联盟区块链的智能鸡舍监控管理平台采集得到的食品追溯数据集上,经吞吐量和共识耗时实验验证,优化后的实用拜占庭容错共识算法实现了多中心子节点集群分层分块共识,解决了传统实用拜占庭容错算法中网络堵塞问题,减少了区块链网络广播资源浪费、降低了区块链共识通信成本,在保证了区块链共识安全的同时提升了食品溯源区块链网络通信和共识效率。

关键词: 食品安全, 追溯, 区块链, 实用拜占庭容错共识机制, 解释结构模型

Abstract:

Blockchain is naturally suited to food traceability systems because of its credibility and non-tamperability, and its application in the field of food traceability is increasing. However, when blockchains are applied in existing food traceability systems, many problems may arise. These problems include there being too many food traceability scenarios, large blockchain network loads, and long network delays. In response to these problems, we introduce the Interpretative Structural Modeling method layered idea to optimize the traditional Practical Byzantine Fault Tolerance (PBFT) consensus mechanism commonly used in blockchains, in order to improve the performance of existing traceability systems. We construct an explanatory structure model through the transaction relationship between the blockchain nodes, layer the blockchain consensus nodes, establish a layered system of blockchain consensus nodes, and then divide the layered blockchain consensus nodes into blocks. We then divide multiple sub-node clusters participating in the consensus and use multi-center sub-node clusters to implement the PBFT consensus. Finally, the consensus center node submits the consensus result to the block to achieve the overall consensus. The food traceability dataset was collected from the intelligent poultry house jointly established by the Beijing Municipal Bureau of Agriculture and Rural Affairs and the Beijing Animal Husbandry Terminus and the intelligent chicken house monitoring and management platform based on the alliance blockchain through the experimental verification of throughput and consensus time-consuming. The improved practical Byzantine fault-tolerant consensus algorithm realizes the multi-center sub-node cluster hierarchical and block consensus, and solves the network congestion problem in the traditional Practical Byzantine Fault Tolerance algorithm. It also reduces the blockchain network broadcast resource waste, reduces the blockchain consensus communication cost, and ensures the security of the blockchain consensus while improving the efficiency of the food traceability blockchain network communication and consensus.

Key words: food safety, traceability, blockchain, Practical Byzantine Fault Tolerance, Interpretative Structural Modeling

中图分类号: 

  • TP311.13