[1] |
WANG Y, ZANG S, TIAN Y. Mapping paddy rice with the random forest algorithm using MODIS and SMAP time series. Chaos Solitons & Fractals, 2020, 140: 110116. DOI:10.1016/j.chaos.2020.110116.
|
[2] |
CHEN Y, LU D, MORAN E, et al. Mapping croplands, cropping patterns, and crop types using MODIS time-series data. International Journal of Applied Earth Observation and Geoinformation, 2018, 69:133-147. DOI:10.1016/j.jag.2018.03.005.
|
[3] |
RI A, MX A, ZC A, et al. Phenology-based classification of crop species and rotation types using fused MODIS and Landsat data: The comparison of a random-forest-based model and a decision-rule-based model. Soil and Tillage Research, 2021, 206. DOI:10.1016/j.jag.2018.03.005.
|
[4] |
杜保佳, 张晶, 王宗明, 等. 应用 Sentinel-2A NDVI 时间序列和面向对象决策树方法的农作物分类. 地球信息科学学报, 2019, 21(5): 740-751.
doi: 10.12082/dqxxkx.2019.180412
|
[5] |
解文欢, 张有智, 张海峰, 等. 县级主要农作物空间分布遥感制图——以同江市为例. 现代农机, 2022(3):67-68.
|
[6] |
宋茜. 农作物空间分布信息提取及其时空格局变化分析研究. 北京: 中国农业科学院, 2018.
|
[7] |
韩冰冰. 吉林省大宗作物分布遥感制图. 长春:吉林大学, 2020.
|
[8] |
ZHANG X, LIU K, WANG S, et al. A rapid model (COV_PSDI) for winter wheat mapping in fallow rotation area using MODIS NDVI time-series satellite observations: The case of the Heilonggang Region. Remote Sensing, 2021, 13(23): 4870.
|
[9] |
AMANI M, BRISCO B, AFSHAR M, et al. A generalized super-vised classification scheme to produce provincial wetland inventory maps: an application of Google Earth Engine for big GEO data processing. Big Earth Data, 2019, 3(4): 378-394.
|
[10] |
HIRD J N, DeLANCEY E R, McDERMID G J, et al. Google Earth Engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping. Remote Sensing, 2017, 9(12): 1315.
|
[11] |
AMANI M, GHORBANIAN A, AHMADI S A, et al. Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5326-5350.
|
[12] |
GORELICK N, HANCHER M, DIXON M, et al. Google Earth Engine: Plane-tary-scale geospatial analysis for everyone. Remote Sensing of Environment, 2017, 2(2): 18-27.
|
[13] |
SHELESTOV A, LAVRENIUK M, KUSSUL N, et al. Exploring Google Earth Engine platform for big data processing: Classification of multi- temporal satellite imagery for crop mapping. Frontiers in Earth Science, 2017, 5: 232994.
|
[14] |
WANG S, DiTOMMASO S, DEINES J M, et al. Mapping twenty years of corn and soybean across the US Midwest using the Landsat archive. Scientific Data, 2020, 7(1): 307.
|
[15] |
CHENG C X, YAN T L, ZHU D H. The method of polygon land use identify supported by GIS-A case study for dynamic monitoring land using. Journal of China Agricultural University, 2001, 6(3): 55-59.
|